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Experiments on Quasiperiodic
Wheel Shimmy
The lateral vibration of towed wheels—so-called shimmy—is one of the most exciting
phenomena of vehicle dynamics. We give a brief description of a simple rig of elastic tire
that was constructed for laboratory measurements. A full report is given on the experi-
mental investigation of this rig from the identification of system parameters to the vali-
dation of stability boundaries and vibration frequencies of shimmy motion. The experi-
mental results confirm the validity of those tire models that include delay effects. A
peculiar quasiperiodic oscillation detected during the experiments is explained by nu-
merical simulations of the nonlinear time-delayed mathematical model.
�DOI: 10.1115/1.3124786�
Introduction
The lateral vibration of towed wheels �called shimmy� is a well-

nown phenomenon in vehicle dynamics. The ultimate elimina-
ion of shimmy is a problem for engineers during the design of
irplane nose gears, motorcycles, trailers, etc. A recent overview
bout the landing gear dynamics can be found in Ref. �1� with
articular reference to shimmy. In spite of the fact that the prob-
em has been known and studied for almost a century �2,3�, the
limination of shimmy is one of the most critical part of the land-
ng gear design �4–6�. Shimmy is also well-known as one of the

ost dangerous vibration problem �also called as “wobble”� of
otorcycles �7,8�. Accidents involving trailers and caravans are

ften originated in the so-called “waving” of the vehicles �9,10�.
Shimmy can be related to the elasticity of the tire �11–14� or to

he elasticity of the suspension system �15,16�. Some basic prop-
rties of shimmy, such as the existence of an unstable limit cycle
n certain speed ranges, can be demonstrated by using rigid wheel
nd elastic caster models �17�.

Nevertheless, the majority of vehicles is rolling on pneumatic
ires and the elasticity of the tire is usually much larger than the
ateral elasticity of the suspension system. A widely used model
hat takes into account the elasticity of the wheel applies the well-
tudied creep-force idea �18,19� often mentioned as Pacejka’s
agic formula, in practice. Basically, this creep-force idea means

he insertion of a stationary submodel into the dynamical model of
himmy, which gives satisfactory results in a wide range of pa-
ameters. Still, even some qualitative phenomena can hardly be
xplained this way, including the quasiperiodicity of shimmy at
ow towing speeds.

In this study, a simple elastic tire model with one rigid-body
egree-of-freedom is investigated by means of a different me-
hanical model. Some of the theoretical analysis and aspects of
his model are published in �14�. To validate the surprising ana-
ytical results, experiments are carried out: at the intersection of
he stability boundaries in the parameter space of shimmy, quasi-
eriodic self-excited vibrations are observed with time varying
requency content.

Our analysis can successfully explain some of the frequency
omponents, but the spectra of the recorded vibration signals con-
ain some theoretically unexplained frequencies, too. This is
aused by the nonlinear effect of partial sliding within the tire/
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ground contact region. Since this nonlinearity is not amenable to
analytical studies, numerical simulations are carried out with spe-
cial attention for the partial sliding effect. The simulated and mea-
sured spectra are compared and harmonized leading to a clear
explanation of the experimental results showing quasiperiodic
shimmy at low towing speeds.

2 Mechanical Model
The mechanical model in question is taken from Ref. �14�. The

elastic tire is towed by a rigid caster of length l on the steady
ground by constant velocity v, as it is shown in Fig. 1. The contact
patch between the ground and the tire is modeled by a contact line
of length 2a. In this way the lateral deformation of the tire is
described by the displacement function q�x , t� of this contact line
relative to the plane of the wheel. The coordinate x describes the
position of the contact points in the contact line, where the coor-
dinate system �x ,y ,z� is attached to the caster, and t stands for the
time.

The equation of motion is given by the integrodifferential equa-
tion �IDE� as follows:

JA�̈�t� = − k�
−a

a

�l − x�q�x,t�dx − b�
−a

a

�l − x�
d

dt
q�x,t�dx �1�

where dot refers to derivation with respect to time. The mass
moment of inertia is JA �kg m2� with respect to the z axis at the
articulation point, k �N /m2� is the specific lateral stiffness of the
tire, and b �Ns /m2� is the specific lateral damping factor of the tire
along the contact line.

We briefly summarize the derivation of the kinematical con-
straint leading to a delay effect based on Ref. �14�. In case of
rolling, the tire elements stick to the ground and have steady po-
sition relative to the ground during contact. The position of a tire
point P contacted to the ground can be given in the ground-fixed
coordinate system �X ,Y ,Z�:

�X�x,t�
Y�x,t� � = �vt − �l − x�cos ��t� − q�x,t�sin ��t�

− �l − x�sin ��t� + q�x,t�cos ��t� � �2�

for x� �−a ,a�. The total differentiation of this position vector
with respect to time gives the velocities of the contact points taken
to be zero to enforce the no-slip condition,

d

dt
�X�x,t�

Y�x,t� � = �0

0
� �3�

for x� �−a ,a�. The manipulation of these two scalar equations
leads to the kinematical constraint of rolling given by a partial

differential equation �PDE�
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q̇�x,t� = v sin ��t� + �l − x��̇�t� + q��x,t��v cos ��t� − q�x,t��̇�t��
�4�

ith x� �−a ,a� and t� �t0 ,�� for the lateral direction. Prime re-
ers to derivation with respect to space variable x. In case of the
implest brush model of the tire �see Ref. �18��, the corresponding
oundary condition is given by q�a , t�=0 due to the zero defor-
ation at the leading edge.
The equation of motion �Eq. �1�� and the kinematical constraint

Eq. �4�� describe the system as a coupled IDE-PDE system. Since
he contact points are sticking to the ground in �X ,Y ,Z�, they
ravel backwards relative to the caster in �x ,y ,z�. This gives the
hysical explanation for the introduction of the traveling wave
olution

�X�x,t�
Y�x,t� � = �X�a,t − ��x��

Y�a,t − ��x�� � �5�

here the time ��x� is needed for a tire point at the leading edge
at x=a to travel backward relative to the caster to the actual

osition P at xP. Accordingly, the recent history of the wheel mo-
ion is stored in the deformation of the contact area. Figure 2
epresents this memory effect of the tire: the lateral forces depend
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Fig. 1 Mechanical model of towed tire
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on the tire contact point positions determined by the wheel leading
edge positions in the past, when these points were put down to the
ground.

The traveling wave solution and the time delay can be deter-
mined in closed form if we consider small oscillations only. By
using the linearized form of Eq. �2� in Eq. �5�, we obtain the time
delay in the physically obvious form

��x� �
a − x

v
�6�

The traveling wave solution of small motions can be calculated
with the help of the following boundary condition q�a , t�=0:

q�x,t� = �l − x���t� − �l − a���t − ��x�� �7�

which satisfies the linearized form of the kinematical constraint
�Eq. �4��, of course.

When the traveling wave solution �Eq. �7�� is substituted into
the IDE �Eq. �1��, the linearized IDE-PDE system can be trans-
formed into the linear delay-differential equation �DDE�

JA�̈�t� + 2ab	l2 +
a2

3

�̇�t� + 2a	k	l2 +

a2

3

 + bvl
��t�

= �l − a�vk�
0

2a
v �l − a + v����t − ��d� �8�

The nonlinear form of this DDE can be found in Ref. �14� without
damping.

Introduce the dimensionless towing length and the dimension-
less towing speed as follows:

L = l/a and V = v/�4�afn� �9�

respectively, where fn is the natural frequency of the undamped
system at zero towing speed. The corresponding damping ratio of
the system is

� = fnb�/k �10�

With the new parameters and with the dimensionless time T
=v / �2a�t and �=−v / �2a��, the dimensionless equation of this
delayed oscillator assumes the form

V2�̈�T� + 2�V�̇�T� + 	1 +
4�VL

L2 + 1/3
��T�

=
L − 1

L2 + 1/3�
−1

0

�L − 1 − 2����T + ��d� �11�

v

A

� � L*

L

0

x

� (xP)=�*

t

the elastic tire
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Linear Stability
Stationary rolling is given by the trivial solution ��T��0. The

ubstitution of the trial solution ��T�=�0e�T into Eq. �11�—or the
aplace transformation—leads to the characteristic function

D��� = V2�2 + 2�V� + 1 +
4�VL

L2 + 1/3

−
L − 1

L2 + 1/3	L
1 − e−�

�
−

1 + e−�

�
+ 2

1 − e−�

�2 
 �12�

he linear stability boundaries can be determined with the
-subdivision method �20�. The substitution of the pure imaginary
= i� into Eq. �12� may refer to Hopf bifurcation. D�i�� is sepa-

ated to real and imaginary parts. For a fixed angular frequency �
nd damping ratio �, the values of V and L can be calculated
umerically with the help of the equations Re D�i��=0 and
m D�i��=0, where � represents the angular frequency of the
elf-excited vibration arising at the stability limit. This method
eads to the determination of the stability boundaries in the �V ,L�
lane parametrized by � for a chosen damping ratio �. To decide
he sense of the stability of the separated regions, the stability
riterion in Ref. �20� can be used.

The stability chart of the system is given in Fig. 3, where the
table areas are shaded for the damping ratio �=0.02. The self-
xcited vibration frequencies f at the stability boundaries are also
lotted relative to the natural frequency. At the intersections of
wo stability boundaries a so-called double Hopf bifurcation
oints exist. At these parameter points, two pairs of pure imagi-
ary complex conjugate characteristic exponents exist with imagi-
ary parts referring to two different vibration frequencies. The
orresponding self-excited vibrations are quasiperiodic. Our goal
s to observe these quasiperiodic oscillations experimentally on a
ig that has only one rigid-body degree-of-freedom. The experi-
ents should emphasize the essential role of delay effect in tire

ynamics.

Experiments
The experimental study of the self-excited vibrations started

ith a thorough parameter identification of the rig constructed
pecially for these shimmy experiments.

4.1 Tire Parameter Identification. First, the stiffness and
amping parameters of the selected tire were measured. After fix-
ng a certain pneumatic tire pressure, the wheel was placed in a
igid frame and the contact length was adjusted with the help of
he size of the frame �see Fig. 4�. To measure the stiffness param-

0 0.05 0.1 0.15 0.2 0.25
0
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�=0.00
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0

1
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ig. 3 Linear stability chart and self-excited vibration
requencies
ters of the tire, the wheel was pulled at its center point in lateral
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direction with different forces, and the specific lateral stiffness
was estimated from the measured displacements of the center
point of the wheel relative to the measured contact length in those
domains where the characteristics were still linear.

To obtain the damping, the wheel was slightly hit in the lateral
direction in the same fixed frame, and the time history of the
lateral acceleration of the wheel center point was recorded. The
damping factor was identified from the logarithmic decrement of
the vibration signal.

The wheel mass moment of inertia with respect to its diameter
was determined via time period measurements in simple pendu-
lum experiments.

4.2 Experimental Rig. The identification of the stability
chart requires the appropriate tuning of some parameters on the
experimental device, namely, the caster length, the contact length,
the mass moment of inertia, and the towing speed. Since all of the
dimensionless parameters depend on the caster length and the
contact length, the proper variation of the system parameters
needs special attention.

The experimental rig can be seen in Fig. 5. It shows how the
towing speed was varied with the help of a controlled conveyor
belt, how the caster length was adjusted, and how the mass mo-
ment of inertia of the whole structure was tuned with the help of
an additional mass attached at a variable position of the rear part
of the caster. The contact length was secured precisely with the
help of the tire pressure and the vertical load on the wheel.

In order to avoid the combination of belt and tire oscillations,
the conveyor belt was stiffened laterally by a steel frame and the
possible lateral buckling of the belt was also under control.

Fig. 4 Stiffness measurement setup
Fig. 5 Experimental rig

JULY 2009, Vol. 4 / 031007-3
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4.3 Measurements. During the experiments, the wheel was
owed with different but constant speeds, while the vibrations of
he caster and the stability of the system were observed at differ-
nt but fixed values of the dimensionless parameters. Despite of
ll our efforts to design the system for a wide range of parameters,
e managed to identify only one of the stability boundaries due to

he intricate connections of the relatively large number of param-
ters. Namely, in order to extend the unstable islands in the sta-
ility charts, we intended to decrease the damping ratio � of our
ystem by increasing the mass moment of inertia with an added
ass on the caster, as shown in Fig. 5 �see also Eq. �10��. This
ay, we also decreased the natural frequency fn of the system, and

he values of the dimensionless towing speeds V were increased
see Eq. �9��. Regarding the minimum speed limit �0.5 km/h� of
he conveyor belt, this procedure blocked the experimental inves-
igation in that part of the stability chart where multiple unstable
slands exist. Nevertheless, the measured stability boundary was
he most relevant one, and we could steer the parameters close
nough to one of the double Hopf points.

The experimental results show good agreement with the theo-
etical ones for low caster lengths. The lower part of Fig. 6 pre-
ents the experimentally determined stability limits together with
he theoretical prediction that is a small segment of the full sta-
ility chart of Fig. 3. In the figure, the dots and crosses refer to
inearly unstable and stable systems, respectively. The circles
how the experimentally detected stability boundary. At the mini-
um adjustable towing speed, the double Hopf stability boundary
as just approached.
Above the experimental chart of Fig. 6, the theoretical vibration

requencies at the stability boundaries are also presented by con-
inuous lines. Close to the intersection of two theoretical stability
oundaries, beating was observed during the shimmying of the

0 0.05 0.1 0.15 0.2 0.25
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Fig. 6 Experimental stability chart
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Fig. 7 Acceleration time history for parameter point H
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wheel in the encircled parameter domain. These quasiperiodic os-
cillations could be explained by the theoretical frequency compo-
nents at the double Hopf point. However, the deeper analysis of
the corresponding vibration signals referred to a much more com-
plicated phenomenon.

4.4 Quasiperiodic Signal Analysis. The time history of the
acceleration of the end point of the caster was detected by means
of a piezo-accelerometer and recorded in the dynamical measure-
ments system PULSE. A typical time history of this signal is shown
in Fig. 7, when the parameters are set at the above described
critical double Hopf point H in Fig. 6. The parameters of the
system are given in Table 1. In Fig. 7, an intricate beating effect
can clearly be observed.

The corresponding spectrum produced by the fast Fourier trans-
formation is shown in Fig. 8. There are some distinctive peaks in
the spectrum. Two of these at f�=0.969 Hz and f�=2.406 Hz
coincide almost perfectly with the ones determined by the theo-
retical analysis of the linearized system and which are also shown
by the corresponding � and � symbols in Fig. 6.

In the spectrum of Fig. 8, the largest peak, however, is at f�

=0.802 Hz, which is just one-third of the larger Hopf frequency
f�. The appearance of this lower harmonic together with the two
side- peaks around the larger Hopf frequency clearly refers to
complex nonlinear vibrations. It was suspected that even the linear
quasiperiodic oscillation becomes unstable, and the nonlinear ef-
fect of partial sliding in the contact region provide limits for the
increasing vibrations resulting in a complicated attractor.

Table 1 The parameters of the system at point H

Dimensional parameters

l=11 mm
k=345 kN /m2

JA=0.0795 kg m2

fn=2.360 Hz
a=39.5 mm

b=2.48 kN s /m2

v=0.5 km /h

Dimensionless parameters

V=0.118
L=0.280
�=0.053

0 0.5 1 1.5 2 2.5 3
10-2

10-1

101
102

103

104

100

f [Hz]

105

A

Fig. 8 Acceleration spectrum for parameter point H
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Discrepancies in the Global Chart
It must be also noted that the experimental stability chart shows

ubstantial difference to the theoretical prediction for higher tow-
ng speeds and caster lengths �see Fig. 9�. The unexpected un-
table behavior at the upper right part of the stability chart could
artly be explained by the nonperfect lateral stiffening of the con-
eyor belt. However, our preliminary investigations indicate that
n improved stretched-string tire model using nonzero relaxation
ength �18� can also explain most of these differences. Neverthe-
ess, this part of the stability chart needs further study from mod-
ling, theoretical analysis, and experimental viewpoints.

Partial Sliding as Nonlinearity
For the theoretical explanation of the experienced nonlinear vi-

rations, a reliable nonlinear mathematical model is needed. Since
he experimental results convinced us that the sliding of the con-
act points has a key role, we decided to use the equations of

otion, Eqs. �1� and �4�, together with checking the lateral forces
n the contact region whether they stay within the condition of
ticking, that is, whether they are smaller than the corresponding
ormal forces multiplied by the static coefficient of friction 	s.
hen this condition does not hold, the lateral contact forces de-

rease to the value of sliding friction forces, that is, to normal

0 0.1 0.2 0.3 0.4 0.5
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0

0.5
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Unstable
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� = 0.053

Fig. 9 Global experimental stability chart
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forces multiplied by the dynamic coefficient of friction 	d. Of
course, this kind of model can be solved only numerically.

First, the Runge–Kutta based numerical simulation was applied
without the sliding effect �	s→��. Clearly, the linear equations
resulted in vibrations increasing exponentially without limits in
the unstable parameter domain of the stability chart of Fig. 3.
When the geometrical nonlinearities were taken into account in
Eq. �4�, a stable limit cycle was detected for the same parameters
of the chart. However, the deformations of the tire contact region
were unrealistically large at the rear end of the contact region.
This also confirmed our hypothesis based on the experiments,
namely, that the nonlinear effect of partial sliding in the contact
region must be the relevant nonlinear effect.

In order to simulate shimmy with partial sliding in the contact
region, we use the criterion of Pacejka �18� that was developed
during the derivation of the creep-force idea. The normal force
distribution in the contact patch is approximated by a parabolic
function. Because the stiffness of the tire is linear in our model,
the critical deformation is described by

�qcr�x�� =
3

4
	s

Fz

ak
	1 −

x2

a2
 �13�

where Fz is the overall normal force, and the viscous damping
forces are neglected.

7 Simulation Results
Some interesting parts of the stability chart of Fig. 3 were

checked by the above described numerical simulation of the non-
linear PDE-IDE system �Eqs. �1� and �4�� extended with condition
�Eq. �13�� of partial sliding. The numerical method is essentially a
second order Runge–Kutta method in time, while the space dis-
cretization with respect to x is tuned to the time steps by imple-
menting the Courant–Friederichs–Lewy stability condition �21�
used for the simulation of traveling waves.

Instead of presenting the many intricate nonlinear vibration
phenomena that we experienced numerically, only those results
are given below, which are related to the experimentally observed
quasiperiodic vibration at the parameter point H in the chart of
Fig. 6. Thus, the parameters were fixed in the simulation software
for the values of the real structure at point H �see Table 1�. The
initial conditions for the numerical simulations were set in many
different ways, but the results shown below correspond to zero
initial deformation q�x ,0��0 and caster angle ��0�=0, but non-
zero �̇�0� �rad/s� angular velocity of the caster. This is a good
model of an impactlike perturbation of stationary rolling. Since

(c)

-0.02 -0.01 0 0.01 0.02

1

5

0

5

1

5

5

� [rad]

time history of caster end-point acceleration,
-0.

0.0

0.0

0.
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jected phase portrait of the transient motion
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he accelerometer was placed at the end point of the caster during
he experiments, the time history of the acceleration of this point
s shown in Fig. 10�a�. The same transient is presented by the
rajectories in Fig. 10�c� in a two-dimensional projection �� , �̇� of
he infinite dimensional phase space of the PDE-IDE �or the DDE�
ystem. This transient vibration contains the two theoretical linear
ibration frequencies f� and f� at the double Hopf bifurcation
oint. These are clearly identified in the front spectrum of the
aterfall diagram of Fig. 13 right after the first 5 s.
The linearized DDE model �Eq. �8�� has already been simulated

nd the shapes of the contact line were determined also analyti-
ally at different unstable regions of the stability chart �22�. Dur-
ng the above transient motion, the simulated shape of the contact
ine shown in Fig. 10�b� follows almost perfectly the linear pre-
ictions apart of a tiny region at the rear part �see the kink at the
eft side in the figure� where sliding occurs.

According to the simulation results, a kind of stationary motion
ppears after about 30–40 s. This stationary motion is, however,
uite complex in accordance with our experimental observations
n Figs. 7 and 8. The simulated stationary time history of Fig.
1�a� is seemingly very similar to that of the experimental one in
ig. 7 both qualitatively and quantitatively. The only difference is
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Fig. 11 Simulated stationary motion: „a… stat
tion, „b… shape of the contact line deformed by
phase portrait
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that the simulated signal is somewhat noisier. This is probably
caused by the weakness of the brush model, namely, that the tire
contact points slide separately leaving kinks behind them in the
contact shape �see also Fig. 11�b��.

This chaoticlike motion can also be followed with the help of
the corresponding trajectory in the 2D projected phase space of
Fig. 11�c�.

The spectrum of this stationary vibration at about 50 s is shown
in Fig. 12. The similarity between the measured �see Fig. 8� and
the simulated �see Fig. 12� spectrum is visible; all the important
peaks show up in it as described during the explanation of the
experimental spectrum in the subsection on quasiperiodic signal
analysis. The corresponding peaks are denoted by the same sym-
bols at the very same frequencies. The spectrum in Fig. 12 can
also be seen on the waterfall diagram of the signal’s wavelet trans-
formation in Fig. 13 at about 50 s.

Some of the peaks in the spectrum of Fig. 12 can be explained
with the help of Fig. 11�b�, which shows a typical contact line
shape with many sliding parts in the vicinity of the kinks, and also
the sliding limit �blue dashed line� according to formula Eq. �13�.
The continuous red curves refer to sticking points. The maximum
lateral friction forces belong to the maximum lateral deformation
�blue dashed line�, and they are calculated with the measured
static coefficient of friction 	s=0.7 while the constant overall ver-
tical load is just Fz=170 N. At the kinks, the tire �brush� points
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Fig. 13 Waterfall diagram of the simulated motion
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Downlo
lide back to a position determined by the dynamic �or sliding�
oefficient of friction 	d=0.2 �its usual value is in the range of
0% of the static coefficient of friction�. The peaks � and �
orrespond to the linear self-excited frequencies. They show up in
his strongly nonlinear vibration of large amplitude because cca
0% of the contact shape survives without sliding in Fig. 11�b�
nd the shape of this front part is quite similar to the shape pre-
icted by the linear theory or by transient simulation in Fig. 10�b�.

The strongest peak at f� is just at one-third of the larger self-
xcited vibration frequency f� in the same way as experienced
uring measurements. We could not explain this based on our
xperiments only, but the study of the simulated �and animated�
ariation of the contact line gives some hint. The front part of the
ontact line does its snakelike oscillation without sliding for some
hort periods while its shape is close to the linearly predicted one
nd its amplitude is increasing. When its amplitude reaches the
liding limit at certain points, this piece goes through a crisis and
he appearance of the kinks fragments its shape. This results in the
verall frequency f�.

It is also interesting to observe that two side-peaks appear dur-
ng the stationary oscillation at f� and f� around f�. They might
efer to a combination of beating effects originated in some com-
licated nonlinear coupling, since their distances from the larger
elf-excited vibration frequency f� are just the same as the dis-
ance of the smaller self-excited vibration frequency f� and the
hird of larger one f�.

The wavelet transformation shows the birth of the peak at f�

nd the growth of f� and its side-peaks. The lower self-excited
ibration frequency f� diminishes then grows again due to the
ragmentation effect explained above. It disappears and shows up
gain and again every 20–30 s quite randomly.

Conclusion
The experimental results, the linear stability theory, and the

imulation results of the extended nonlinear PDE-IDE �or DDE�
odel show very good agreement at one of the most intricate

arameter points of the wheel shimmy, where the linear theory
redicts quasiperiodic self-excited oscillations originated in a
ouble Hopf bifurcation. After the transients, however, the in-
reasing nonlinear vibrations are somewhat stabilized at another
ore complex quasiperiodic motion, which contains at least five

haracteristic peaks in its spectrum. These are identified both by
xperiments and by simulations, the latter giving some hints about
heir possible physical origin. The clarification of this picture
ould be supported by a full analytical unfolding of the co-
imension two Hopf bifurcation.

These results confirm the relevance of the memory effect in tire
odels during the investigation of stability problems of wheels.
ournal of Computational and Nonlinear Dynamics
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