J. Nonlinear SC|V0| 6: pp 415-448 (1996) J o u r n al o f

Nonlinear
Science

© 1996 Springer-Verlag New York Inc.

Micro-Chaos in Digital Control

G. Hallet and G. S¢par?
! Division of Applied Mathematics, Box F, Brown University, Providence, Rl 02912, USA

2 Department of Applied Mechanics, Technical University of Budapest, H-1521 Budapest,
Hungary

Received August 6, 1995; manuscript accepted for publication June 18, 1995
Communicated by Philip Holmes

Summary. In this paper we analyze a model for the effect of digital control on one-
dimensional, linearly unstable dynamical systems. Our goal is to explain the existence
of small, irregular oscillations that are frequently observed near the desired equilibrium.
We derive a one-dimensional map that captures exactly the dynamics of the continuous
system. Using thignicro-chaos mapwe prove the existence of a hyperbolic strange
attractor for a large set of parameter values. We also construct an “instability chart”
on the parameter plane to describe how the size and structure of the chaotic attractor
changes as the parameters are varied. The applications of our results include the stick-
and-slip motion of machine tools and other mechanical problems with locally negative
dissipation.

1. Introduction

Consider the near-equilibrium motion of a one-degree-of-freedom mechanical system
under the effect of velocity-dependent forces. In particular, assume that the system is
subject to somaegativevelocity-dependent dissipation or an accelerating force which

is linear in the velocity. Then, in nondimensionalized form, the veloeigatisfies the
linear differential equation

v —kv=0,
with k > 0. We want to counteract the effect of the fokaeby introducing a computer-

controlled dissipation term which is linear in velocity. Ideally, such a force would change
the above equation to

v — kv = —pu,

wherep > kis the damping coefficient. However, the control we use is assumed to have
two deficiencies. First, the computer samples the velocity only at discrete time instances
with sampling timeAt > 0. As a result, the dissipative force applied by the control
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Fig. 1. The control of stick-and-slip motion.

system would be- pv(j At) throughout the time intervaj[At, (j + 1) At), wherej isa
positive integer. Second, the velocity measurement has a finite resolution, i.e., velocity is
measured by the system in terms of the multiples of some small velocitly unid. This
implies that fort € [j At, (j + 1) At) the actual force applied by the control system will
be —phint (v(j At)/h). Introducing the notatiofy = j At, we arrive at the following
equation for the velocity:

. u(t)

b(t) — kv(t) = —phint <T> t et tji1). (1.1)

This equation arises, e.g., in the study of stick-and-slip motion of certain machine tool
parts (see, e.g., [15]). For these systems digital control is used to achieve a stable, small
feed rate for the tool. The corresponding mechanical model consists of a block sliding
on a surface near some prescribed velogjtynder the action of an electric motor (see
Figure 1). At low speed the combined dry and viscous friction facacting on the
block is locally decreasing as the velocityncreases. The electric motor introduces a
dissipative force described by the torque-sp€ed- w) characteristics of the motor, but
the system may still be unstablewt In that case, an additional control force provided
by the electric motor (with input voltagé) is used to keep the velocity stable. This
introduces artificial dissipation which increases linearly with the velocity.

One finds that fot € [tj, tj+1), (1.1) admits the solution

h - h -
u(t) = (Uj - p? Int <%’>) ) 4 p? Int (%‘) (1.2)

wherev; = v(t;). From (1.2) we directly obtain that
. ph vj ph vj
Vis1 = tﬂr&v(t) = <vj - Int <F]>) ot 4 s Int (ﬁ) (1.3)

Vi1 = vy — E(ekAt — Dhint <%‘) (1.4)

Let us introduce the parameters

or

a=¢ea > 1, b=£(e“‘—1)=§(a—1)>a—1.
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Equation (1.4) shows that the velocity values at the time instajnsesan be obtained
by iterating the one-dimensional mapping

X > ax — bhint(x/h), (1.5

where the initial value for the iteration ig = v, the velocity at some timg.

This mapping and its multidimensional analogs have a central role in describing the
local dynamics of digitally controlled systems. When a processor is used to stabilize the
unstable equilibrium of a mechanical system, the sampling delay and the round-off errors
at the analog-digital converters frequently resultin small amplitude stochastic vibrations
around the desired equilibrium. Such problems were considered by Ushio and Hsu [17],
who studied the dynamics of a corresponding two-dimensional map. Delchamps [6]
formulated the general control problem of mulimensional, discrete linear system and
analyzed tha = 1 case in more detail (see Section 6 for a comparison with our results).
Stépan [13] and Enikov and 8t&n [8] studied analytically and experimentally the small
amplitude stochastic motion of an inverted pendulum attached to a moving cart. In
that example digital control was used to stabilize the upright position of the pendulum.
In linear approximation the corresponding discrete control problem can be described
by a three-dimensional map of the same form as (1.5). Among practical engineering
applications, precision control tasks appear to be the most important ones. An example
can be found, e.g., in the paper of Ueda et al. [16] on the machining of mirrors.

Although most of these problems are multidimensional, even the study of the general
one-dimensional digital control problem has been missing in the literature. Our goal in
this paper is to provide a detailed analysis of the one-dimensional case described by
the map (1.5). We prove the existence of a chaotic attractor for the system and identify
parameter domains with the same type of chaotic dynamics. By “same type” we mean
identical symbolic dynamics. We also present estimates for some characteristic quantities
like amplitude and frequency range, entropy, and fractal dimension. We believe that our
results are of substantial practical importance and may be used to improve the design of
digitally controlled systems.

2. Notation and Definitions

To give a general formulation of our problem, let us consider a map of the form (1.5)
with
@b eP={@p)eR?|0<a—1<8 <al.
For convenience, we introduce the rescaling> x/h to obtain the equivalent map
(with m = Int(1/h) + 1):
F:[0,m] — | =0, m],
X = ax — bInt(x), 21

which we shall refer to as the-chaos mapNote thatF is a piecewise linear, monotone,
upper semicontinuous map with discontinuities at the inteigerd, 2, ..., m. Over the
intervalM; =[i —1,i), F = F can be written as

Fi(x)=ax— (i — 1)b, xe M =[i —1i), i=1...,m 2.2
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Fig. 2. Graph ofF for the parameter values = 5/2,
b = 13/8.
We will also need the auxiliary maps_, F,:1 — | defined as
F_(x) = (a — b)x, F.(x)=(@a—b)x+b. (2.3
A sketch of the graphs df, F_, andF, can be seen in Figure 2. Note that
F_(X) < F(X) < FL(X), xel. (2.4

It is easy to verify thaF hasN fixed points given by

e N N (25)
a—1
with N defined as

We remark thaf is only uppersemicontinuous; that is why we did not simply define
N as the integer part df/(b + 1 — a). As one immediately sees from Figure 2, all the
fixed pointsz are unstable. In the plane of the parametessmdb the regionZ; ¢ P
yielding exactlyj fixed points is given by

Zj={@@,b) e Plg(a) =b<c@), 27
where the lineg; are defined as

ja-1
b=cj@ = -1

(2.8)

We show some of these domains in Figure 3.
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Fig. 3. Parameter domaing; referring to j
fixed points.

Our program for the study df is as follows. In Section 3 we identify a positively
invariant setA for the mapF and show that it is in fact a hyperbolic strange attractor.
In Section 4 we consider a Cantor getvithin A which is responsible for the “strange”
behavior in the attractor. We describein symbolic dynamics terms. We also study
the domain of attractio® of .4 and present symbolic dynamics for certain hyperbolic
chaotic sets not lying ifD. In Section 5 we give a topological characterization of the
Cantor setA. Finally, we summarize our results and relate them to previous work on
one-dimensional digital control.

3. The Invariant Set .4 and Its Properties

Before we start the main topic of this section, we make our first observation on the map
F which suggests irregular features in its dynamics.

Proposition 3.1. F has sensitive dependence on initial conditions.

Proof. Let us fix the constant
b
§ = ——.
a+1
We will show that for any; # X, with [Xo — X1| < 8, there existdN > 1 such that

IFN(x2) — FN(xp)| > 8. (3.1

SinceF expands the distances of points taken from the same intbhyakithout loss
of generality we can assume that afteterations

F"(x1) € M;, F'(x2) € M;, i #J. 3.2
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Fig. 4. ConditionH (j) in case ofa = 2,b =
5/2,j =2.

If [F"(x2) — F"(Xxy)| > 8, we are done. If not, then we have

b
F"(x2) — F"(x §=—— <1,
[F"(X2) X)) < a+1<

and hence, suppositg'(x,) > F"(x1), we musthavg =i +1in(3.2). Then, recalling
the definition of the maj; from (2.2), we can write

IF™(x2) — F™Y(x1)| = |Fiy10 F"(X2) — Fi o F"(x0)|
= |a(F"(x2) — F"(x1)) — b|

b—alF"(x2) — F"(xy)| > b— a8 = §;

v

hence the choic®l = n + 1 completes the proof. O

In what follows we will be interested in parameter configurations for the Féqpr
which there exists a positive integer<2 j < m — 1 such that the following condition
H(j) is satisfied:

H() () Fe() > zj4a,
(i) F_(j) < z.

The geometric meaning of conditidth(j) can be seen in Figure 4. Note thatf(j)
holds, then

F(z.,) D (7. ilYli. Z1l.
Fdi,z+D 2 [z, i1VI[], zal (3.3)

Also observe that if we require equalities in conditidrij), then the intervald;, j] U
[i, z+1] = [z, zj1+1] is invariant underF, as shown in Figure 5. If we require equality
in (i) of H(j) and adapt (ii) as above, then any iterate of a peiat[z;, z;,1] can only
leave this interval towards smallewalues, i.e., to the left. On the other hand, if (i) holds
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Fig. 5. The invariant intervalZ;, z;,1] in case
ofa=2,b=4/3,j =2.

as above but we require equality in (ii), then iteratexafan only leave the interval
X € [z, zj41] to the right.

As we shall see later (and as one can immediately guess from (8.@))implies the
existence of &orseshoevithin the interval k;, z;11]. By “horseshoe” here we mean an
invariant Cantor set on whidhis topologically conjugate to a (one-sided) Bernoulli-shift
on two symboals, i.e., it shares the symbolic dynamics of the Smale-horseshoe map (see,
e.g., [9]). In our case one may assign a symbol tawieiterateF"(x) of X € [z, zj11]
based on a partition of the interviathat will be constructed later in this section.

As a first step in our analysis, we now rephrase conditibfj) in terms of the
parametera andb.

Proposition 3.2. Condition H(j) above is equivalent to

0]
+ _ ja(a - 1)
b<d(a= TG _Da (34
(ii)
.. ja@-1
b>d (@)= T (3.5)
Proof. From (2.3) and (2.5) we obtain that conditiét(j) is equivalent to
@—b)j+b> a%bl, (3.6)
: (j—Db
(@a-b)j < a1 (3.7)

These inequalities and the fact th@t b) € P imply the statement of the proposi-
tion. O
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Fig. 6. The parameter domairﬁr’f.

Proposition 2.2 enables us to identify regions in thgb) parameter plane in which
H (j) holds (which requireg > 2, and hencen > 3, as one can easily check). Let us
fix two integersj; and j, with 2 < j; < j,, and define the subsdé’ﬁ2 of the parameter
spaceP as
PE={@beP|be @@ d_@]n[dl,@ di@)} @8
Note that for any(a, b) € Pjiz, j = jpandj = j, are the minimal and maximal
integers, respectively, for which conditidi(j) holds. In Figure 6 we plot some of the
setst‘f on the parameter plan@, b). Note that the graphs mij* andd;” intersect at
(a,b) = (2,2j/(2j — 1)), which implies that all the set@iJ lie in thea > 2 open
half-plane of the parameter plane. Similar calculation shows that th@§e&o liein
thea > (j1+ j2)/j1 half-plane. Any parameter point 2 with a > 3 belongs to one of
the domainstJf. As far as the shape of these regions is concerned, note that the graph
of dj+ is asymptotic from below to the graph gf, while the graph ot is asymptotic
from above to the line,, (i.e., tob = a — 1; see Figure 6). Furthermore, we have the
relations
ji+j2+1
a<(>) % = dj @ > (<) dj;l(a),
14
a< (>) % = df(@ < (>)d,_;@).
1—
By Proposition 3.2, fofa, b) € Pj'f the setl containsj, — j; + 1 adjacent intervals
of the form

Lj =1z, z44], J=11 -, 2
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such that on each of these intervelsadmits a horseshoe-type dynamics (see formula
(3.3) and Figure 5). The union of these intervals is usually not invariant lidewever,
it is contained in the set

A=[F_(j1—D,F(2+ D] =[@-b)(j1—1D,@-Db(j2+D +b], (39

which will be of central importance to us. Figure 7 explains the constructiod:of
One looks for the minimal invariant set which captures all the anticipated complicated
dynamics off, namely, the minimal invariant set containing all the intervajsZ; 1]

which are candidates for containing horseshoes. The following proposition makes this
statement more precise.

Proposition 3.3. A is a positively invariant attractive set.

Proof. We first show thatA is invariant under forward iterations of the mgpLet us
observe that from the definition &f we have

X €[], jol = FX) e [F_(jv), F+(j2)). (3.10

Since, by definition, foKa, b) € Pjiz the conditionsH (j, + 1) and H (j; — 1) do not
hold, we can write

Xel[F_(ji—D,j1] = F& el[F_(j1—1,F(j1),
Xel[jo, Fr(j2+ D] = FX e[F_(j2), Fr(j2+ D).

But (3.9), (3.10), and (3.11) imply (x) € Awhenevex € A, and henced is positively
invariant under.

(3.11)
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We now show tha#d attracts iterates of any point taken from the open interval
Do = (2j,-1, Zj+2) D A. (3.12

Let us consider soma, € Dy such that
Xo € (Zj,-1, F-(j1 — 1)) =% < F(Xo) < FL(j1 —1). (3.13

This shows thafF has no fixed point iz, _1, F_(j1 — 1)]. Suppose that no iterate of
Xo falls in A. Then, by (3.13) all the iterates &§ fall in (zj,—1, F-(j1 — 1)] and form a
bounded monotone sequerd& (Xp)}22 , with

lim F"(xo) = x* € (zj,-1, F-(j1 — D]. (3.14)
n—oo
Since on the intervalzj, _1, F_(j: — 1)] the mapF = F;,_; is continuous, we must have
F(x*) = x*,

which contradicts the fact tha has no fixed point inzj,—1, F-(j1 — 1)]. Hence we
obtained that for anyo € (z,—1, F-(j1— 1)), there existsi; > 0 such thaF™(xp) € A.
A similar argument shows that for ang € (F;(j2 + 1), zj,+2), there exists1;; > 0
such thatF"2(xg) € A. Therefore,Dg is a subset of the domain of attractiéhof the
setA. O

We remark that the above argument proves thas globally attractive ol — {0}
if F has no fixed points outsidd U {0}. If F does have fixed points outsidg then
the full domainD of attraction ofA is an open subset ¢f— .4 whose complement is a
Cantor set. We will discuss this in Theorem 4.4 in Section 4.

To analyze the properties of the skfurther, we introduce a partition of into closed
intervals in two steps. First, we extend the set of the intevplse already used in the
following way:

Li-1=[F-(j1—D,z,] =[@-b)(j1 — D, 25 (j1 — DI,
LJ :[Zjvzijl]:[a_E]_(j _1)7 %]]7 ] e{jl»"'st}v

Lizt1 = [Zpr1 Fir(i2 + D] = [327]2, b+ @—b)(j2 + D).

To prepare a further partition of these intervals in the second step, let us define the
nonnegative integelg andk" as

kf:min{keZ+ | ka(j)< Fi(] —1)}, jelinin+1..., j2+1},
K =min{keZ* | FA( > F-(G+D).  jelii-Lin.... i
(3.15)

These integers are well-defined for parameter vajagb) € P-jf, since

Jim FA =2z <F(j-1. forall j < j2+1,
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Fig. 8. Partition of A in case ofa = 5/2,b = 25/16, j; = 11, j, = 14,
ko = 2.
kli—>moo Fj:_kl(j) =z >F_(j+1), forall j > j;—1

In the above definitions, the “inverse” &f in (2.2) is defined as
1 1 b . . S :
Frym=2y+24-D.  yelF-(G-D.F0) j=h-L.. . Q+L

thus it is understood the, ™ = F* o F* always projects intoj[ - 1, j) and
FJ-0 = |. The latter formula means that the integkfs+ can also be zero if either
j<Fi(j—Dorj>F_(j+1).

Let us fix the nonnegative integer
_ + + o -
ko = maxfkt_y. o kK (3.16)
The geometrical construction b;r‘**shows that we in fact haug = max{kflll, kj;H},

since the integerlsj’”r cannot be greater than the integers betwen andk , in
(3.16). The table below (see also Figure 8) presents the full partitighinfo

K=2(jz— j1+2(ko+1)+2 (3.17)
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adjacent intervaly,, which are now indexed fromp = 1 to p = K:

p Ip

Lj—1: 1 [F-(j1— 1), j1 —1]
2 [jx— L F Y(ja— D]
3 [F (2= 1. F%(ja— D)
Ko+ 2 [F 31— 1). 7]

L 2(j — joko+1) + ko +3 [z, F())]

je{jl ..... ]2}
2(—jpko+D+2ko+3  [F(). ]
2( — 1+ Do+ 1) +2 [i, F73(0)]
2 — i+ Do+ D +ko+2  [F2(0). z41]

Lipt : 22— 1+ Do+ D +ko+3  [Z,41. F, (2 + D]

2(j2 — 1+ Dko + 1) + 2k + 3 [FL(j2+ 1), j2+ 1]
2(j2— 1+ 2Dko+1D+2=K [jo+1 F(j2+D]
(3.18
This partition clearly depends on the parameteasidb through the integerg and j,
the fixed pointg;, and the functiond_, F,, and Fj‘k.

Proposition 3.4. Let us fix2 < j; < j, positive integers. Then for arg, b) € Pj'f
the following hold:

(i) We have
(i1) F(l1) D l+3 provided

a*@a—-1(ji—1
a2(j1 -1 —-a+ 1

b>g (a = (319

(i2) F(lp) =lp_1forany pe{2,...,ko+ 1};
(i3) Flkp+2) = g1 U ligr2-
(ii) Forany integer je {js,..., j2} we have
(i) F(lp) =1IpUlppfor p=2(j — ji)(ko+1) + ko + 3;
(ii2) F(lp) = lps forany
Pe{2(j — jutko+ 1) +ko+42(j — jko+ 1)+ 2ko + 2};
(ii3) F(lp) D UETe 1 for p=2(j — ji)(ko+ 1) + 2ko + 3;
(ii4) F(Ip) DU s, Llgforp=2(j — ji+ Dko+ 1) +2;
(ii5) F(lp) = lp_1 forany
pe{2(j —j1+Dko+1) +3,2(j — j1+ D(ko+ 1) + ko + 1};
(ii6) F(lp) =lp1Ulpfor p=2(j — j1i+D(ko+1) + ko + 2.
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(iii) We have
(iiil) F(lp)=IpUlpafor p=2(jo— ji+ (ko + 1) + ko + 3;
(iii2) F(lp) = lpss forany

Pef{2(jo—ji+Dko+1) +ko+42(j2— j1+ 2 (ko + D};
(iii3) F(lk-1) D Ik where K—1=2(jo — j1+2)(ko+ 1) + 1,
(iii4) F(lx) D F(lk_k_2) provided

a?(a—1(j2+1)
aZj+a—-1

b<g}@ = (3.20)

Proof. We sketch the calculations for each statement of the proposition in order.
(i1) Since

F() D [F(F-(j1 — 1), Fy(j1— 1)),
lots = [Zjl, F["”(J'l)], (3.21)

for statement (il) to hold we first require

Fi-i(@a=b)(j1—-1D) <z, <&

. _ b .
a@-b)(j1-D-(1-2b=— (-1 & b=g,@.
The second requirement
F %) < Fe(ii— ).

arising from (3.21), is always fulfilled because of the construction of the integsee
(3.16)).
(i2) Forp =2,
_ . —1,: _ ; =0/ —
F2) =[Fi- D, F(FGa - D) = [F-Gi - D, F%Gi - D] = I,
while foranyp € {3, ..., ko + 1},
Flp = [FFE P20, FE ()]
=[R20, B, PG| = 1pa.
(i3)
Fllip2) = [FR0), F@o| = [ ). 2, ]
= [F @ R U [Fr0), 2] = e Uligie:

(ii1) The calculation is similar to that of (i3) above.
(ii2) Do as in (i2).
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(ii3) For p = 2(j — ju(Ko+ 1) + 2ko + 3,

F(p > [FEI R ],

Uit = [ Fsa + ) (3.22)
On the right-hand sides of these expressions, the lower boundaries of the intervals coin-
cide. For the upper boundaries we require

FoG+D < Fe(i.
which is always true as it immediately follows from the definitionskeandk;,,
(3.15) and (3.16)).
Note that (ii1—ii3) reduces to the single formula

, (see

F(p) D lpUlpraUlpp for P=2(j —j1)+3 if ko =0.

(ii4) The calculation is the same as above with reference to the definition of the integer
K.

(iJiS) Repeat the above calculation in (i2).

(ii6, iiil) As in (i3).

(ii2) As in (i2).

(iii3) The explanation for the special handling of the interval, is the fact that
F(lk-1) # F(lk_1), sinceF is upper semicontinuous; that 5(j,+ 1) # F,(j2+1).

Thus,

Fl-n) o [F(Fa(iz+ 1), Feliz + D] = Ik
Note that (iiil)—(iii3) appears in the form
F(lk—1) D lk-1U Ik if k0=0

(iii4) We have

F(k) = [F-(j2+ D, F(F+(j2+ D)],
Ikotoz = [Fit(ia), zpea (3:23)
thus for statement (iii4) we need to satisfy
F. 932 > F-(i2+ ),

which is guaranteed by the definitionIQfandkjj The condition for the upper boundaries
in (3.23) yields

Zj,41 < Fpp2(@—Db)(j2+D+b) <

—ql2sa@-b(z+D+ab—(o+Db & b=gi@.

This completes the proof. O
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b

Fig. 9. The parameter domair@/?.

Let us fix the integers Z j; < j, and define the set
Gi=|@bePlg@=b=g@]|.

The analysis of the conditions (3.19) and (3.20) by sohdjga) = gj’; (a) shows that

the sethjl2 is nonempty for all real values & if j, < 3j1 — 4, and lies in the open
half-plane given by
1
a>———(ji+ 2+ /i +2i22~ j — 3j2 - 4] )
21 (Jl J2 \/Jz 122 = 1) = BJ{ —4J1)

The grapl‘gj*z‘ is asymptotic from below to the grajf).1, while the grapty;; is asymp-
totic from above to the line,,. We will use the parameter domain

2= PGk (3.24)
= [@bePibe @ @, 4@l NId, @, d; @) g @. g @]}

Some of these domains and some cwgfés_, are shown in Figure 9. Note that
a< (> = d @ > (9)g; @,
a<()3+it+tiz = di@<E)g®@.

The domainsQi2 are substantially smaller than their supeﬂéﬁt but the difference is
less and less with increasing valuesjp{compare, e.g.P$ and Q3).
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We now define the matriA € RX*X by letting

o 1 if Fd;) D |j,
&i = {O otherwise 329

The following result is an immediate consequence of Proposition 3.4.

Corollary 3.5. Let us fix the parameters a and b in the definition of the map F and
assume that for some integ@s j; < j2(a,b) € Qj‘f holds. Then at least the following
elements of the matrix A are nonzero:

Ak3=1 aKkk2=1L

app =1,
pef2(j—j1+Dko+1) +ko+2,2(j — j1+D(ko+ 1) + ko + 3},
je{in—1..., J2}:

Apr1 =1

pPef2(j — juko+1) +ko+3,2(j — jo)ko+ 1) + 2ko + 3},

j E{jl,..-,j2+1};

ap,p_]_: 1,

pe{2(j —j1i+Dko+D+2,2(] — j1+ DKo+ 1) + ko + 2},
jefin—1...,j2k

(3.26)

Ap.pi2 = = A prkot2 = 1, o _
P=2(j — juko+1) +2ko+3, SR U TR PY
8p,pk-2="""=ap2=1

As an example, let us consider the cas@of j1 = 1 andky = 2, i.e., wherK = 20.
Then the structure of the matrik will be the following:

100 00OOOOOOOOOOSOOOOQ O
01 00O0OO0OO0OOOOOOOOOOSOOQOTGOI
001 10O0O0O0O0O0OO0ODO0OOOOOSOOQOTG OI
000O0O110O0O0OO0OO0OOOOOOOQOT® O]
0 00OOO1O0O0OO0OOOOOOOOQOT® O]
oooo0o0o00601121212121- ... .- .. -0

0. . 1111000O0O0O0O0O0O0O0O0OO0OTP
00 0OO0OOOOT11O0O0O0ODO0OOO0OOOSOTQO0OTG OI
000OO0OOOOOI110O0O0O0O0OO0OTO0OTGO0OTGOI
0 00OOOOOOO11I10O0O0OO0ODO0OTGO0OTG O]I|
0 00OOOOOOOOOT11I O0O0OO0OOOTG O]/
000O0OO0OOOOOOOOI1I 1112 - O

o. ... . . . . 1111000000 (
00 0OO0OOOOOOOOOOTI1I0O0O0O0O0TI¢
0 00OOOOOOOOOOOI11I100U0O0]|
0 00O0OOOOOOOOOOOOOOTIL1O0])
0 00OOOOOOOOOOOOOOOT1]|)
00 0OOOOOOOOOOOOOOOODOOON]N
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Here- denotes elements which may be either 0 or 1 depending on the actual values of
the parametera andb.

The following result is fundamental in our upcoming description of the symbolic
dynamics inA.

Proposition 3.6. Let us fix the parameters a and b in the definition of the map F and
assume that for some intege?s< j; < j2 (a,b) € QJ’f holds. Then all the entries of

AX-1 are nonzero.

Proof. The(p, g)-th entry of A" can be written as

K
agq = Z Apiy Qigiy -+ Qi jin 1 Anaq- (3.27)

i1,..,in—1=1

Since all the entries ofA are nonnegative, (3.27) is nonzero if there exists at least one
nonzero product in the sum. In the following, we trace in five steps as the nonzero
elements inA" wander with increasing and as they finally spread into all the entries of
AK~1 We will use the nonzero elementsApresented in Corollary 2.5 without explicit
reference to those formulas, and also make use of the faetthat 0 whenevea, = 1.

(1) The entries oAkt are nonzero at the following indices:
(i) At (ko+2,1),(ko+2,2),...,(ko+ 2 ko+ 2), since

-1
A 2 kot 2o+ 2 ko + 1Ko+ 1Ko Bnyin O =

s # foranyn e {1, ..., ko}.

(i) Similarly, at(K —ko—1, K —ko—1), (K —kg—1, K —ko), ..., (K —ko—1, K).

@i) At (p,p,(p,p + ,....(p,p + 2k + 2 for p =
2(j — juko+ 1) +ko+3, je{j1 ..., j2}, since

—n—1
a',§°p ap.p+18p+1p+2°  Apin-1ptn #0 =

agit, #0  foranyne{0,...,ko+ 1},
and

Ap,p+18pi1,pr2 - - Apiko—1 prko@prkopin #0 =

“;in;eo foranyn e (ko +2, ..., 2ko + 2}.

(iv) Similarly, at(p,p—2ko—2),(p,p—2ko—1),...,(p, p) for p = 2(j —
ji+Dko+1) +ko+2 je{ji..., 2l
(2) The entries oAUz~ i1+2k+D gre nonzero at the following indices:

(i) At (ko+3,ko+3), (ko+3,ko+4), ..., (ko+ 3, K) since

jo—j+1 ko+1
Ao 13,k +3R0+3, 3ko+5a3ko+5 Sko+7 °

ko+1
B ) (ko Dbko3.2( — ) (ko4 Dtko+34n 7 O =
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(j2—j1+D (ko+1)
By 43.2() — o) (ko+D-+ko+3+n 7 O

foranyn € {0,...,2(ko + 1)}, j € {j1,..., 2}, and
foranyne {0,...,ko+2}, j=j.+ 1
(iiy Similarly, at(K — ko—2,1),(K—-ko—2,2),...,(K—-kg—2, K —-ky—2).
(3) The entries oAUz~ i1 +2ko+D+1 gre nonzero at the following indices:
(i) At L, ko+3), (L ko+4),...,(, K)since

j2— i1+ (ko+1
al.ko+3aﬁf+3f% e '£0 =

a2t ¥l 2 0 foranyne (ko +3,..., K.

(iiy Similarly, at (K, 1), (K, 2),...,(K,K — kg — 2).
(4) The entries oAUz~11+2kotD+ko+2 gre nonzero at the following indices:
(i) At (ko +2,1), (Ko + 2,2),..., (ko + 2, K) in the wholeky + 2-nd row, i.e.,
a2 it et HeT2 4 0 g e {1,.... K}, since

ko+1 L (i2—j1+2)(ko+D)+1
o121 n #0 =

alejirlerbilor2 o foranyne {ko+3,.... K},

and
(i2—j1+2) (ko+D)+1 ko+1 £0 =

B2, ko+2 &t2.n
g ir2lerbHlor2 0 foranyne (1,....ko+2).

+2,n

(i) Similarly, at(K —ko—1,1), (K —-ko—1,2),...,(K —ky—1, K),i.e., inthe
whole K — kg — 1-st row.
(5) The entries ofA2i2-i1+2o+D+1 — AK-1 gre nonzero at the following indices:
() At (p,g)forall p=2(j — j1+Dko+1+2+n ne{0,... k} Je
{j1,..., jo}andq € {1, ..., K} since

Qp,p—18p—1,p-2 " * " A2(j — 1+ 1) (ko+D)+3,2(] — j1+ D) (ko+ 1) +2°

A2(j - j1+ D) (Ko+D+2.2( — j) (ko DHko+2 e et
Sttt Qako+7,4ko+684Ko+6,3Ko+4 03k +4,3K0+3 " *
*+ + A2Ky+6, 2k0+5A2Ko+5, 2ko+402Kkg+4, ko +2°

(J2=i+D(ko+D)—1-n_ (j2—jai+2) (ko+1)+ko+2 K-1
B2, ko2 &2, #0 =ay, #0

(iiy Similarly, at (p,q) forall p = 2(j — jke +1) + ko +3+n, n €
{0,...,ko}, j €fjr,...,j2}andg e {l,..., K}
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(i) At (p,q)forall pe{l,ko+2}andg € {1, ..., K}, since
ko+1
Ap,p—1 - A328218 ko+3% | 3 2k, +402ko+4, ko+2"

(J2—J1+ D (Ko+1)—2—p , (j2— j1+2) (ko+1)+ko+2 K-1
#0 =a,~ #0.

Aot 2.ko+2 8,t+2.q
(iv) Similarly, at(p,q) forall pe {K —ko—1,K}andq e {1,...,K}.
The subcases (i—iv) cover all the possible indiceaffn; that is, a5, * # 0 for any
p.ge(l, ..., K}

This completes the proof of the proposition. O

We are now in the position to prove that under the conditions of the previous propo-
sition the invariant sed cannot be decomposed into smaller invariant sets of nonzero
measure.

Proposition 3.7. Let us suppose that the assumptions of Proposition 3.6 hold. Then F
is topologically transitive omA.

Proof. We have to show thatlfl, V c A are disjoint open sets, then there exists 1
such thatF"(U) NV # @. We will prove this in two steps. First, we show that for any
open set) C A there exists an integen > 1 such that™(U) contains a full interval

I, of the partition (3.18) for some k¥ p < K. Let us suppose the contrary, i.&l,

is a connected open interval i such that its image undét™ does not contain a full
intervall, for arbitrarym > 1. Letl (W) denote the length of an open connected interval
W and let

L =1().

Now U must have a connected open suligetc U such thatF is continuous orJ;.
Moreover, by our assumption dh, U; can be chosen such that

L

ThenF (U;) is a connected open set with

La
I (F(Up) > >
and it has a connected open subidetc F(U;) on whichF is continuous and

La
This again implies that

L 2
I(F(Uy)) > Ta.
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Moreover, by assumptiorf; (U,) does not contain a full interval,; hence it has a
connected open subddt ¢ F(U,) on whichF is continuous and

La?

Repeating this construction, we can build a sequgbgg_; of connected open sets,
such that none of these contains a full interyahnd hence their lengths satisfy

[(Up) < 1. (3.28)

On the other hand, as above, we have the estimate

|(Up) > %L (g)m_l. (3.29)

SinceL # O0and(a, b) Pjiz impliesa > 2, (3.29) contradicts (3.28) fon sufficiently
large, which completes the first part of the proof.
Using this result we may now assume that for some 1, F™ contains a full interval

I, for some 1< p < K. SinceV C A is open, there existg € {1, ..., K} such that
(I —alg) NV # ¢. By Proposition 3.6, we have

K-1 .
a7 0
hence we can find an index sequenge. ., ik _» such that
Api @i, - Qi o, # 0.
By (3.25) this means that

F(lp) D iy,
F2(lp) D F(liy) D liy,

FK-1(1,) > '|:K72(|i1) D FK3(l,) D - D g,
implying
FKMU)nV o FE YNV o (lg—alg NV #40,
which concludes the proof. O
We now summarize the results of this section in the following theorem.
Theorem 3.8. Let us fix the parameters a and b in the definition of F and assume that

for some integerg < j1 < j2, (,b) € QJ’f holds. Then the sed c | defined in (3.9)
is a hyperbolic strange attractor for the map F.
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Proof. By Propositions 3.3 and 3.7 is a closed, indecomposable attracting set, and
hence it is an attractor. By Propositions 3.1 and B.7s a chaotic map restricted 14,

and hencea is a strange attractor. Finallfz’(x) = a > 1 for anyx € A (the upper
derivative ofF always exists), and hencéis hyperbolic. O

‘The above theorem proves that the 4és a strange attractor in the parameter domains
QJ’f One of the main ingredients used in the proof is the topological transitivity of the
map F on A. We established this property & in Proposition 3.7 using symbolic
dynamics based on a partition @f. Our construction required conditions (3.20) and
(3.19), which restrict the domain of existence of the attragtdm the parameter plane.

It appears, however, that more involved interval decomposition$ wbuld yield the
topological transitivity ofF on larger parameter domains that would ultimately cover
the whole domairP-'l2 with the exception of a measure zero set. We also remark that
the simplest possible partition of corresponds té; = 0, in which case the domain

of existence of4 is substantially smaller than what we obtained for more sophisticated
partitions withky > 0.

4. Symbolic Dynamics on4

In this section we will examine the dynamics within the attractanore closely. As the
reader can expect, the partition of the last section can be used to introduce a symbolic
characterization ofd. In fact, {I,—}J-K:l is aMarkov partitionof A (see, e.g., [2]). Since
our map is not even continuous over this partition, we provide here more details than
usual for the construction which is standard for Markov transformations (ourkriap
not Markov in the sense of, e.g., [3] or [4]).

As a first step, we slightly modify the partition of used in the previous section.
Namely, we let

(o= 1lp, p=1...,K—-1,

| : _ 4.1
Ik =[i2+ 1 Fr(j2+ 1 —e],

where K and |, are defined in (3.17) and (3.18), respectively, ang- 0 is a yet
undetermined small parameter. Note thatdor O this partition does not cover all of
the attractotd. We also change the definition of the matfiby definingA € RX*K as

8 = {1 if F(li) D 1,

0 otherwise 4.2)

Notice that we now requiré€ (l;) (as opposed to its closure in (3.25) to contain the
intervall; for the caséyj = 1). The reason for these changes is that for our construction
we will need the preimage of artyunderF to be aclosedsubset of; wheneve#;; # 0.

Of course, we would like to retain the nice propertie®dbr our modified set-up, which
can be achieved by the proper choice of the paransdte(4.1).

Proposition 4.1. Let us fix the parameters a and b in the definition of the map F and
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assume that for some integets< j1 < jo, (@, b) € Q]'f holds with

Q= |@ b e Ple (d; @. @] N[d, @, df @) Nlg, @, g @n].

(4.3)
Then we can seleet> 0 small in (4.1) such that A= A. In particular, all the entries
of AK~1 are nonzero.

Proof. A quick review of the statements of Proposition 3.4 shows that fer0 in (4.1)
all the entries ofA and A are the same except for

l=ak 1k # a&-1kle=0 = 0.
However, one can select some appropriately small
0<e<Fi(ja+1)—F 5z,
such that
F(lk-1) 2k
is satisfied and
F(lk) D Tk k2
still holds, which implies
éK—l.K |8>0 = 1,
with all the other entries oA equal to the respective entries Af O
Note the slight restriction on the parameter set by usﬁ]ﬁfgc QJ’f in (4.3) instead
of (3.24). This is needed for the constructioredf the above proposition.
In view of Proposition 4.1, we now f(&, b), select an appropriate > 0, and drop

the hats fromA, T, and Q?, keeping their new definitions in mind.
We start the description of the dynamics on the4dty introducing the set

K=1{12,...,K},
and considering the set of semi-infinite symbol sequences
Ta={s=%51S |15 €K, ags,, =1,i € Z"}.
As is well known (see, e.g., [18]k A is a complete metric space with the metric
~ 1 |s —§]
ds 9 = ; RN (4.4)
This metric has the following two properties:

(1) Ifs =§ fori =0,..., Nthend(s, 8 < 1/2N.
(2) Ifd(s,8) < 1/2N+1thensg =§ fori =1,..., N.
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The matrixA is usually called théransition matrixcorresponding to the spaée.
It can be shown that ifA is irreducible, thenz 5 is a compact, totally disconnected,
and perfect space—in other wordsCantor set The irreducibility of A means that it
has some power with all nonzero elements; hence in our Aaseirreducible if the
conditions of Proposition 4.1 hold. Gfia one can define a map

TA: XA —> 2A,
S=%%% > 5=5%%;...,
which is asubshift of finite typavith transition matrixA. The mapra has

(1) a countable infinity of periodic orbits,
(2) an uncountable infinity of nonperiodic orbits,
(3) adense orbit.

In the following we will show that4 has a subset on whidh behaves in much the
same way aga.
Let

E=Up,01p (4.5)

be the set containing all the boundary points of the interlals. ., 1k and define the
sets

L=ANUss, o F'(Is), B=LNUZF(E), A=L-B, (46
and the map

S:EA—),C,
s—>x, & F(x)elg, forali=01,.... 4.7)

We can now prove the following result.

Proposition 4.2. Suppose that the conditions of Proposition 4.1 hold. Then

(i) Themap S A — L is well-defined. In fact, it is a continuous surjection.
(i) S|S*(A) is a homeomorphism onto its image.
(iii) F |L is topologically semiconjugate toa, i.e., the following diagram commutes:

S
¥p — L

| I

p —— L
S

Proof. To prove (i), we first show that for arg/e X 5 the set

G =nNZF ()
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is not empty. Les = 58, - - - € X a. By the definition ofz A we know that
F(lg) Dl & Gi=F (g Nlg #90.

FurthermoreG; is a closed subset df, (even if I, contains a discontinuity of, as
one can easily see). We also know from the definitioX gfthat

Fls)Dls, & Flg)Nlg #0,
and hence
Go=F HF )Nl Nlg C Gy
is a nonempty closed set. In general,
Gj=F ' ..(FYFs)Nls)N..0Nlg) Ny =N_F(ls) C Gj1
is a nonempty closed set. Then
G=---CGCGj_1C--CG1CGp=lg, (4.8

as the intersection of a nested sequence of closed nonempty intervals, is nonempty.

This result implies that for ang € X there existx € £ such thatF' (x) e I for
alli € Z*. If this x is unique, then the mag is well-defined. Suppose the contrary,
i.e., there existy # x in £ with Fi(y) € Ig for alli € Z*. Then no iterate of the
open intervald = (X, y) underF contains a full interval which contradicts our first
observation in the proof of Proposition 3.7.

The fact thatSis onto follows immediately from the definition df, since ifx € £
then there exists € X 4 such that

XeNZF(ly) < S(s)=x.

We now show thaBis continuous. Let us fix > 0 and let
! N | | ! 1
8(8) = W, (8) =Int Oga E + 1

By property(2) of the metricd in (4.4), if S € XA, then
dis,5) <8 = s=5, i=1,...,N(),

implying
S(s), S(5) € NNEF 1 (lg).

Since the length(ly) of any intervally is less than 1, we have

_ 1 1
|S(S) — S(S)| < WI(ISN(S)) < W <é€,

and henceis continuous, which proves statement (i).
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Clearly, Sis one-to-one over the s8t1(A), and thusS™! is well-defined on this set.
Indeed, sincd- is well-defined, for anyk € A there exists a unique sequersges, . . .
such thatF'(x) € ls, i € Z*. Consequently, to prove (ii) we only have to show that
S-1is continuous. Sinc& ! is continuous om, for anyx € A andn > 1, there exists
8(n) > O such thatify € A, then

IXx—yl<8m = FIx),Fl(yels, i=1,...,n,

with s = S™1(x). Fix ¢ > 0 and select

1
n = Int <Iog2 —) + 1
&

If §= S~1(y), then by property (1) of the metrit defined in (4.4) we have
d(s,d) < ¢,

and henceés ! is continuous. This proves statement (ii).
Finally, considels = 58, - - - € Za. Then, by the definition ofa, 7a(S) = 5% - -
and

Soma(s) = N2 F ' (ls).

On the other hand,
S(5) =N2F(ly) = FoSs)=n2F ),

which proves thatF |£) o S = Soma. We can therefore conclude that the semiconjugacy
claimed in statement (iii) of the proposition indeed holds. O

We can summarize the main results of this section together with their consequences
as follows.

Theorem 4.3. Let us suppose that the conditions of Proposition 4.1 hold. Then

(i) A c Ais a hyperbolic invariant Cantor set for the map F, on which F is topo-
logically semiconjugate to a one-sided subshift on K symbols with the irreducible
transition matrix A.

(ii) Letn > 2be aninteger. Then on F has

N(n) = % (Tr A" — iNG )) (4.9
(i,ny

distinct periodic orbits of minimal period n, where the notatiénn) refers to
integersl < i < n which divide n.

(iii) F has an uncountable infinity of nonperiodic orbits and an orbit which is dense
in A.
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Proof. Statement (i) follows directly from Propositions 4.2 and the propertiédisted
in (3.26) in accordance with Proposition 3.6. Statement (iii) follows from the properties
of X p andra (see, e.g., [18]). By the topological semi-conjugac¥db r », itis enough
to show that (4.9) in (ii) holds foit a.

Let us count the number of distinct periodic orbits of penofbr 7. Any of these
periodic orbits is associated with a periodic sequepse - - $:5S1 -« - S - - - . The num-
ber ofn-long symbol sequences beginning wiitand ending withg, which can appear
within an elemens of X, is exactly the number of nonzero terms in the sum

K
_an
Z Apiy @isip * " Qipgin 1 8ip1qg = apq'

i1,.0in1=1

Therefore, the number of possiliidong periodic symbol sequences is given by
K
P(n)=> aj, =TrA"
p=1

Some of these orbits, however, have prime periods lower thdime number of these
are subtracted fror® (n) in (4.9). Furthermore, if infinite symbol sequences form an
n-periodic orbit form o, the above argument counts that single onltitnes, depending
on which of then symbol sequences we start iteratingat. Based on these observations,
the formula in (ii) follows. O

We finish this section with a statement on the domain of attraction of the chaotic
attractor.A. In the previous section we saw that it always contains the ope®get
defined in (3.12).

Theorem 4.4. Let us suppose that the conditions of Proposition 4.1 are satisfied and
let D denote the domain of attraction gf. Moreover,

(i) suppose that;j=2and p = N — 1 with N defined in (2.6), i.e., F has no fixed
points outside4 U {0}. ThenD =1 — {0}.
(i) Suppose that there exists j with £ ] < N — 1 such that

+ _ j(a2_1)
b=hj@ = j@a+1—a
holds. Then the interval
. b(j — 1) .
i F = — —b b
[z, F+())] |: a1 ,@-bj+ i|

contains an invariant Cantor s€ ¢ D. On(; F is topologically conjugate to a
one-sided subshift on two symbols with transition matrix
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(i) Suppose that there exists j with< j < j; such that

_ j@ -1
h; =
=N @ = a1
holds. Then the interval
. . bj
[F-(]), zj+1] = [(a— b)j, rjlil

contains an invariant Cantor s&€ ¢ D with properties as in (ii) above.

Proof. Statement (i) follows from the proof of Proposition 3.3, so we start with the
proof of (ii). Let us define the intervals

, b(j -1 .

h=I[z,]j]= [ﬁ’ :|,

b@j—1

_ -1 i —
Y =[F 1 F+(D] = [ a@—1)

,(a—b)j+b].

We then have

F(J) =[z,F()D] D VU & (4.10
Furthermore, we have

. b(j —1 _ .
F(J) = [F(F @), FpaFe ()] = [% a(@-bj+b - lb} :

which implies
F(b)oDkh <4 a(@a-bj+b—-jb>j < bsh]*(a). (4.1
Then using the same methods as in Proposition 4.2, one obtains statement (i) from (4.10)
and (4.11).
Similarly, to prove (iii) we let

Jo =[F_(}), Fjil(ZJ'Jrl)] = |:(a_ b)J, a@-1

. . bj
h=I[}.z41] = |:J, rjljl

b@(j — 1)+1)}

We then have
F(J) =[F-()),z4+1] D WU X, (4.12
and
. . ) bj
F(J) =[F(F-(j), Fj(Ffl(ZjH))] = [a(a— b)j —(j — Db, aTJJ ,
from which we obtain
F(l)Ddh ¢ a@-bj-(j-Db<j & bx=h(@. (4.13

Again, (4.12) and (4.13) imply statement (iii) of the theorem. O
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Remark 4.1 Note that the above theorem shows thak ihas no fixed points outside

A U {0}, then iterating an arbitrary point € .4 U {0}, we monotonically approach the
attractor4 and become under the influence of the chaotic dynamics inkitfghowever,

F has fixed points outsidd U {0}, then there may exist an open set of initial conditions

in D — Dy such that the corresponding trajectorie$-dirst become under the influence

of chaotic invariant sets which are horseshoesH®r In practice this means that the
trajectories undergotaansient chao®efore they arrive at the chaotic attractor (see also
the iteration shown in Figure 7). This fact shows that even the domain of attrdetion

of A may have a complex structure. In particular, the attractor may have a fractal basin
boundary (see, e.g., [14] for examples and details).

5. Some Properties of the Hyperbolic Set ¢ A

Using the fact that the dynamics Bfrestricted taA is topologically semiconjugate to a
subshift of finite type, one can use general results on subshifts to chara€tarizthis
invariant set. For example, thiepological entropy B of F = F|A (with respect to the
Lebesgue-measure di) can be computed as

h|E = Iog |)\|maX7 (5-1)

where|A|max > 1 is the dominant eigenvalue of the transition matisee, e.g., Mane
[12]). From this we immediately obtain the following.

Proposition 5.1. Suppose that the conditions of Corollary 3.5 are satisfied and all the
elements of A not listed in (3.26) are zero. Then we have

he <log(ko + 3),

with kg defined in (3.16).

Proof. Note that under the conditions of Corollary 3.5 the sum of off-diagonal elements
in any row of A is at mostky + 2 while the diagonal element is at most 1 in any row.
Then the statement of the proposition is an immediate consequence of (5.1) and the
Gershghorin theorem (see, e.g., [5]). O

Another characteristic quantity, the Ljapunov exponerit afan directly be computed
from the definition ofF

ie = e = loga,

noting that the upper derivative &f exists at any point of.

Although the Lebesgue measure of the &dt zero, it still has a decisive effect on
the dynamics withind. Usingu g andhg we can give an estimate for the “size” of the
invariant setA.
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Theorem 5.2. Suppose thatthe conditions of Proposition 4.1 hold. Then the Haussdorff-
dimension H @A) and the capacity (or fractal dimensionX@) of A obey the estimates

HD(A), C(A) < E.
IE

Proof. We first prove the estimate involving the Haussdorff-dimension of the hyperbolic
set. By definitionH D (A) is the infimum of the numbets > 0, such that for any there
existé > 0 and a coveringC; };2, of A by closed intervals (1-balls) such th&€;) < §
and); 1%(Ci) < e. First we will construct a covering af such that the length of the
individual closed intervals will be as small as needed.

Fix a numberj e K and suppose that € A N ;. This implies the existence of a
uniques € X a With 59 = j such that

X € Gn(Sy, ..., ) = NLoF ' (lg),
for anyn > 0 integer. Therefore,
XEANIly, = X€Ug .a  #0 Gn(ss, ..., ), (5.2)

and hence for ang > 0, A N |, can be covered by a number of

il ..... in=1

intervals, and each has a length less than
1

Hence, for anyn > 0 we have a numbe¥(n) > 0 such thatA can be covered by a
number of

K
NG = Y asi @i, = I1A"s (5.3)

10,..es In=

intervals, each with length less thdn). Note that in (5.3)|| Alls denotes the norm
obtained by summing all the elements of the nonnegative matriXo estimate the
Haussdorff-dimension ok, we seek the infimum af > 0 such that

. 1\* . 1\*
nll—>moo |A"|s (5> =0 & nIl_)moolog<||A”||S (5) ):—oo. (5.4)

By the equivalence of the norih ||s to the Euclidean matrix nornp. ||, requiring (5.4)
is equivalent to

lim log

n—o0

K 1 o
m2( = —
i;(xi) (an) = —o0, (5.5)
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where; denotes the eigenvalues Af From (5.5) a straightforward calculation gives

< IOg|)\|max _ E
loga  we’

as claimed.
To prove the estimate on the capacity, we first note that by definition

logn(e)
logl -

CA) = Iimigf

wheren(e) is the number of intervals (1-balls) of lengthwhich is necessary to cover
A. Using the covering constructed in the first part of the proof and lettiags (n), we
can write

)

. log|lA" 1 log|x
C(A) < lim 9lIA s _ lim Zlog||A"||s = 109 [ Imax
n—oo logan logan—cn loga

where this last inequality follows from the spectral radius formula (see, e.g., [1]X

In Theorem 5.2 we have used the topological definitions of the Haussdorff-dimension
and the capacity. For cases when typical trajectories may not approach the invariant
set in question, one can similarly define the metric versions of the entropy, Haussdorff-
dimension, and the capacity (see, e.g., [9]). A notable fact is that for subshifts of finite type
the topological entropy is the maximum of the metric entropies, as shown, e.g., & Man”
[12] (in general, itis only the supremum of the metric entropies). If one can guarantee the
existence of an invariant ergodic measure for the fathen the (metric) Haussdorff-
dimension of the invariant set exactly equals the quotient of the (metric) entropy and
the Ljapunov exponent (see, e.g., [10] for a related result on one-dimensional, piecewise
continuous maps). In view of this, we make the following conjecture:

Conjecture 5.1. The estimates in the statement of Theorem 5.2 are in fact equalities,
ie.,

HD(A) = C(A) = he
We

In accordance with this, we have the estimate
hg < loga. (5.6)

We remark that estimate (5.6) holds in all the examples we considered with given
values of the parameteasandb.

5.1. An Example

Let
a=25, b=2 (5.7)
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W — e
F(l) /

F(I5)
Fk)) /ey
7?[3) __7 / 1
72 z3 X
o [1] 2 [3]4 °

l1,]2 134 [4 IéI6

Fig. 10. u-chaos map witla = 5/2, b = 2.

For these parameter values the graplfraé shown in Figure 10.
The formulas (2.6) and (2.5) providé = 3 fixed points located at

2, =0, 2 = 3 =3
The formulas (3.4) and (3.5) in Proposition 3.2 with the definition (3.8) of the parameter
domains of “instability” give

ji=j2=2 = (ab)=(572 P’

Since

75 225

b=2€|:3—8,1—12

} = (d; (25), d; (25)] N [df (2.5), d (2.5)) N [g; (2.5). g} (2.5)]

is satisfied in (3.24) under conditions (3.20) and (3.19), we have the parameters
(a.b) = (25.2) € Q5.

satisfying the conditions of Theorem 3.8. Thus, the set

17
A= [z’ z}
defined in (3.9) is a hyperbolic strange attractofFofSinceF has no fixed points in
| — AU{0}, by (i) in Theorem 4.4 the domain of attraction for the attractas | — {0},
i.e., all trajectories starting away from the origin end up in the attractor.
The evaluation of formula (3.16) resultskp = 0, so the symbolic dynamics o#

can be constructed witK = 6 intervals, as shown by (3.17). Based on the original
partition (3.18), we obtain the Markov-partition (4.1) in the form

1 4 4
B R A R ¥
8 8 7
I = 2 - | = — | — —_ —
4 |:,3], 5 [3,3:|, 6 |:3,2 8i|,
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wherees > 0 small exists due to

75 225 R
=2c|—, = = (25,2 2C Qs
b 6[38’112) S @b=(@252¢cc
Based on Proposition 4.1, the transition matrix takes the form
0 0100
110000
A 001110
“]10 1 1 1 0 o)
0 00011
0 0010

as can also be checked in Figure 10. This transition matrix satisfies the conditions of
Proposition 5.1, which yields the preliminary estimate

hg <log3
for the topological entropy of on A. However, Conjecture 4.3 suggests the refinement
hg <log25,
which agrees well with the numerical result
hg = log|A|max >~ log 2.32.

Using Theorem 5.2, the Haussdorff- and fractal dimensions of the hyperbaoliccett
obey the estimate

log 233
log25 "
Again, Conjecture 5.3 suggests that we in fact have

HD(A),C(A) <

log2.32

HD(A) = C()) ~ 0925 = 0.92

6. Conclusions

In this paper we studied the micro-chaogsechaos mag= defined by
X — ax — bint(x), xel =[0,m], O<a—-1<b<a

This map has a central role in describing the local dynamics of digitally controlled
unstable systems. Such systems are subject to two discrete effects: sampling (a linear
effect), and round-off errors (a nonlinear effect). These two effects frequently cause
chaotic oscillations on a microscopic scale near a desired equilibrium of the system.

We proved the existence of a hyperbolic strange attractor for a large set of parameter
values for the majf. We also studied its domain of attraction, which is of full measure,
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but may have a fractal boundary. This is due to the fact that the points not contained
in the domain of attraction form invariant Cantor sets for certain parameter values (see
Remark 4.1). We also described the dynamics on the attractor using symbolic dynamics.
We identified regions in the parameter space with the same type of symbolic dynamics.
This enabled us to draw an “instability chart” on the parameter plane to describe how the
nature of chaotic dynamics changes as the parameters are varied (see Figures 6 and 9).

Whenever quantized-state control is used, the unstable equilibrium of the open loop
remains unstable in the closed control loop. This instability does not necessarily result in
chaos: Chaos can be suppressed, e.g., by dry-friction effects. These effects, however, may
cause relatively large static errors in positioning. Hence one may have to put up with the
presence of micro-chaos if one wants to stay in the regime of viable design parameters.
In that case, our results can be used to reduce the size of the chaotic attractor, as well as
its distance from the unstable equilibrium. This means reducing the amplitude and the
mean value of chaotic oscillations to a level which is acceptable in a given problem. The
detailed knowledge of the symbolic dynamics within the chaotic attractor makes it easier
to identify statistical features of the irregular, micro-scale oscillations. This should also
be of use in the design of more advanced control strategies.

It is to be noted that in numerical experiments with the map (2.1), the finite number
of digits used in the computations are likely to introduce a further level of discretization
which is not present in our original problem. As a result, simulations of the map may
yield observable (i.e., stable) periodic solutions within the attradtowhich of course
contradicts the fact that the attractor is indecomposable. Related results can be found,
e.g., in Domokos [7].

We finally comment on some related results of Delchamps [6]. He considered digitally
controlledn-dimensional discrete problems and analyzed the one-dimensional case in
more detail. He studied essentially the same map ag@uim (1.5), but defined on both
sides of the origin (this makes no difference since the map is odd). After identifying an
attracting set (which contains our attractdy, he proved the existence of an invariant
ergodic measure for measure zero, nowhere-dense set of the parameter §pabg
The construction of the measure would be necessary to compute the related entropy and
Haussdorff-dimension, but it is an unsolved problem in general. We note that Boyarsky
and Scarowsky [4] construct invariant ergodic measures for certain Markov maps, but
the micro-chaos map is not Markov in their sense.

We believe that by proving the existence of a chaotic attractor for large sets of pa-
rameter values, constructing instability charts, and characterizing the strange attractor
with its domain of attraction, our study lays the groundwork for the development of
more advanced design principles for digitally controlled, one dimensional systems. An
important direction for future research is the extension of the one-dimensional results to
the higher dimensional digital control problems listed in the Introduction.
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