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Summary. In this paper we analyze a model for the effect of digital control on one-
dimensional, linearly unstable dynamical systems. Our goal is to explain the existence
of small, irregular oscillations that are frequently observed near the desired equilibrium.
We derive a one-dimensional map that captures exactly the dynamics of the continuous
system. Using thismicro-chaos map, we prove the existence of a hyperbolic strange
attractor for a large set of parameter values. We also construct an “instability chart”
on the parameter plane to describe how the size and structure of the chaotic attractor
changes as the parameters are varied. The applications of our results include the stick-
and-slip motion of machine tools and other mechanical problems with locally negative
dissipation.

1. Introduction

Consider the near-equilibrium motion of a one-degree-of-freedom mechanical system
under the effect of velocity-dependent forces. In particular, assume that the system is
subject to somenegativevelocity-dependent dissipation or an accelerating force which
is linear in the velocity. Then, in nondimensionalized form, the velocityv satisfies the
linear differential equation

v̇ − kv = 0,

with k > 0. We want to counteract the effect of the forcekv by introducing a computer-
controlled dissipation term which is linear in velocity. Ideally, such a force would change
the above equation to

v̇ − kv = −pv,

wherep > k is the damping coefficient. However, the control we use is assumed to have
two deficiencies. First, the computer samples the velocity only at discrete time instances
with sampling time1t > 0. As a result, the dissipative force applied by the control
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Fig. 1.The control of stick-and-slip motion.

system would be−pv( j1t) throughout the time interval [j1t, ( j +1)1t), wherej is a
positive integer. Second, the velocity measurement has a finite resolution, i.e., velocity is
measured by the system in terms of the multiples of some small velocity unith > 0. This
implies that fort ∈ [ j1t, ( j +1)1t) the actual force applied by the control system will
be−ph Int (v( j1t)/h). Introducing the notationtj = j1t, we arrive at the following
equation for the velocityv:

v̇(t)− kv(t) = −ph Int

(
v(tj )

h

)
, t ∈ [tj , tj+1). (1.1)

This equation arises, e.g., in the study of stick-and-slip motion of certain machine tool
parts (see, e.g., [15]). For these systems digital control is used to achieve a stable, small
feed rate for the tool. The corresponding mechanical model consists of a block sliding
on a surface near some prescribed velocityv0 under the action of an electric motor (see
Figure 1). At low speed the combined dry and viscous friction forceC acting on the
block is locally decreasing as the velocityv increases. The electric motor introduces a
dissipative force described by the torque-speed(T −ω) characteristics of the motor, but
the system may still be unstable atv0. In that case, an additional control force provided
by the electric motor (with input voltageU ) is used to keep the velocityv0 stable. This
introduces artificial dissipation which increases linearly with the velocity.

One finds that fort ∈ [tj , tj+1), (1.1) admits the solution

v(t) =
(
vj − ph

k
Int

(
vj

h

))
ek(t−tj ) + ph

k
Int

(
vj

h

)
, (1.2)

wherevj = v(tj ). From (1.2) we directly obtain that

vj+1 = lim
t→tj+1

v(t) =
(
vj − ph

k
Int

(
vj

h

))
ek1t + ph

k
Int

(
vj

h

)
, (1.3)

or

vj+1 = vj e
k1t − p

k
(ek1t − 1)h Int

(
vj

h

)
. (1.4)

Let us introduce the parameters

a = ek1t > 1, b = p

k
(ek1t − 1) = p

k
(a− 1) > a− 1.
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Equation (1.4) shows that the velocity values at the time instancesj1t can be obtained
by iterating the one-dimensional mapping

x 7→ ax− bh Int(x/h), (1.5)

where the initial value for the iteration isx0 = v0, the velocity at some timet0.
This mapping and its multidimensional analogs have a central role in describing the

local dynamics of digitally controlled systems. When a processor is used to stabilize the
unstable equilibrium of a mechanical system, the sampling delay and the round-off errors
at the analog-digital converters frequently result in small amplitude stochastic vibrations
around the desired equilibrium. Such problems were considered by Ushio and Hsu [17],
who studied the dynamics of a corresponding two-dimensional map. Delchamps [6]
formulated the general control problem of ann-dimensional, discrete linear system and
analyzed then = 1 case in more detail (see Section 6 for a comparison with our results).
Stépán [13] and Enikov and St´epán [8] studied analytically and experimentally the small
amplitude stochastic motion of an inverted pendulum attached to a moving cart. In
that example digital control was used to stabilize the upright position of the pendulum.
In linear approximation the corresponding discrete control problem can be described
by a three-dimensional map of the same form as (1.5). Among practical engineering
applications, precision control tasks appear to be the most important ones. An example
can be found, e.g., in the paper of Ueda et al. [16] on the machining of mirrors.

Although most of these problems are multidimensional, even the study of the general
one-dimensional digital control problem has been missing in the literature. Our goal in
this paper is to provide a detailed analysis of the one-dimensional case described by
the map (1.5). We prove the existence of a chaotic attractor for the system and identify
parameter domains with the same type of chaotic dynamics. By “same type” we mean
identical symbolic dynamics. We also present estimates for some characteristic quantities
like amplitude and frequency range, entropy, and fractal dimension. We believe that our
results are of substantial practical importance and may be used to improve the design of
digitally controlled systems.

2. Notation and Definitions

To give a general formulation of our problem, let us consider a map of the form (1.5)
with

(a, b) ∈ P = {(α, β) ∈ R2 | 0< α − 1< β < α}.
For convenience, we introduce the rescalingx → x/h to obtain the equivalent map
(with m= Int(1/h)+ 1):

F : [0,m] → I = [0,m],
x 7→ ax− b Int(x),

(2.1)

which we shall refer to as theµ-chaos map. Note thatF is a piecewise linear, monotone,
upper semicontinuous map with discontinuities at the integersi = 1, 2, . . . ,m. Over the
interval Mi = [i − 1, i ), F ≡ Fi can be written as

Fi (x) = ax− (i − 1)b, x ∈ Mi = [i − 1, i ), i = 1, . . . ,m. (2.2)
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Fig. 2. Graph ofF for the parameter valuesa = 5/2,
b = 13/8.

We will also need the auxiliary mapsF−, F+: I → I defined as

F−(x) = (a− b)x, F+(x) = (a− b)x + b. (2.3)

A sketch of the graphs ofF , F−, andF+ can be seen in Figure 2. Note that

F−(x) ≤ F(x) < F+(x), x ∈ I . (2.4)

It is easy to verify thatF hasN fixed points given by

zi = b(i − 1)

a− 1
, i = 1, 2, . . . , N, (2.5)

with N defined as

N = max
i∈Z+

{
i | i < b

b+ 1− a

}
. (2.6)

We remark thatF is only uppersemicontinuous; that is why we did not simply define
N as the integer part ofb/(b+ 1− a). As one immediately sees from Figure 2, all the
fixed pointszi are unstable. In the plane of the parametersa andb the regionZj ⊂ P
yielding exactly j fixed points is given by

Zj = {(a, b) ∈ P | cj+1(a) ≤ b < cj (a)}, (2.7)

where the linescj are defined as

b = cj (a) = j (a− 1)

j − 1
. (2.8)

We show some of these domains in Figure 3.
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Fig. 3. Parameter domainsZj referring to j
fixed points.

Our program for the study ofF is as follows. In Section 3 we identify a positively
invariant setA for the mapF and show that it is in fact a hyperbolic strange attractor.
In Section 4 we consider a Cantor set3 withinA which is responsible for the “strange”
behavior in the attractor. We describe3 in symbolic dynamics terms. We also study
the domain of attractionD of A and present symbolic dynamics for certain hyperbolic
chaotic sets not lying inD. In Section 5 we give a topological characterization of the
Cantor set3. Finally, we summarize our results and relate them to previous work on
one-dimensional digital control.

3. The Invariant SetA and Its Properties

Before we start the main topic of this section, we make our first observation on the map
F which suggests irregular features in its dynamics.

Proposition 3.1. F has sensitive dependence on initial conditions.

Proof. Let us fix the constant

δ = b

a+ 1
.

We will show that for anyx1 6= x2 with |x2− x1| < δ, there existsN ≥ 1 such that

|F N(x2)− F N(x1)| ≥ δ. (3.1)

SinceF expands the distances of points taken from the same intervalMi , without loss
of generality we can assume that aftern iterations

Fn(x1) ∈ Mi , Fn(x2) ∈ Mj , i 6= j . (3.2)
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Fig. 4. ConditionH( j ) in case ofa = 2, b =
5/2, j = 2.

If |Fn(x2)− Fn(x1)| ≥ δ, we are done. If not, then we have

|Fn(x2)− Fn(x1)| < δ = b

a+ 1
< 1,

and hence, supposingFn(x2) > Fn(x1), we must havej = i +1 in (3.2). Then, recalling
the definition of the mapFi from (2.2), we can write

|Fn+1(x2)− Fn+1(x1)| = |Fi+1 ◦ Fn(x2)− Fi ◦ Fn(x1)|
= |a(Fn(x2)− Fn(x1))− b|
≥ b− a|Fn(x2)− Fn(x1)| > b− aδ = δ;

hence the choiceN = n+ 1 completes the proof.

In what follows we will be interested in parameter configurations for the mapF for
which there exists a positive integer 2≤ j ≤ m− 1 such that the following condition
H( j ) is satisfied:

H( j ) (i) F+( j ) > zj+1,

(ii) F−( j ) < zj .

The geometric meaning of conditionH( j ) can be seen in Figure 4. Note that ifH( j )
holds, then

F([zj , j )) ⊃ [zj , j ] ∪ [ j, zj+1],

F([ j, zj+1]) ⊃ [zj , j ] ∪ [ j, zj+1]. (3.3)

Also observe that if we require equalities in conditionH( j ), then the interval [zj , j ] ∪
[ j, zj+1] = [zj , zj+1] is invariant underF, as shown in Figure 5. If we require equality
in (i) of H( j ) and adapt (ii) as above, then any iterate of a pointx ∈ [zj , zj+1] can only
leave this interval towards smallerx values, i.e., to the left. On the other hand, if (i) holds
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Fig. 5. The invariant interval [zj , zj+1] in case
of a = 2, b = 4/3, j = 2.

as above but we require equality in (ii), then iterates ofx can only leave the interval
x ∈ [zj , zj+1] to the right.

As we shall see later (and as one can immediately guess from (3.3)),H( j ) implies the
existence of ahorseshoewithin the interval [zj , zj+1]. By “horseshoe” here we mean an
invariant Cantor set on whichF is topologically conjugate to a (one-sided) Bernoulli-shift
on two symbols, i.e., it shares the symbolic dynamics of the Smale-horseshoe map (see,
e.g., [9]). In our case one may assign a symbol to then-th iterateFn(x) of x ∈ [zj , zj+1]
based on a partition of the intervalI that will be constructed later in this section.

As a first step in our analysis, we now rephrase conditionH( j ) in terms of the
parametersa andb.

Proposition 3.2. Condition H( j ) above is equivalent to

(i)

b < d+j (a) =
ja(a− 1)

1+ ( j − 1)a
, (3.4)

(ii)

b > d−j (a) =
ja(a− 1)

aj − 1
. (3.5)

Proof. From (2.3) and (2.5) we obtain that conditionH( j ) is equivalent to

(a− b) j + b >
jb

a− 1
, (3.6)

(a− b) j <
( j − 1)b

a− 1
. (3.7)

These inequalities and the fact that(a, b) ∈ P imply the statement of the proposi-
tion.



422 G. Haller and G. St´epán

Fig. 6.The parameter domainsP j2
j1

.

Proposition 2.2 enables us to identify regions in the(a, b) parameter plane in which
H( j ) holds (which requiresj ≥ 2, and hencem ≥ 3, as one can easily check). Let us
fix two integersj1 and j2 with 2 ≤ j1 ≤ j2, and define the subsetP j2

j1
of the parameter

spaceP as

P j2
j1
= {(a, b) ∈ P | b ∈ (d−j1 (a), d−j1−1(a)] ∩ [d+j2+1(a), d

+
j2
(a))}. (3.8)

Note that for any(a, b) ∈ P j2
j1

, j = j1 and j = j2 are the minimal and maximal
integers, respectively, for which conditionH( j ) holds. In Figure 6 we plot some of the
setsP j2

j1
on the parameter plane(a, b). Note that the graphs ofd+j andd−j intersect at

(a, b) = (2, 2 j/(2 j − 1)), which implies that all the setsP j
j lie in the a > 2 open

half-plane of the parameter plane. Similar calculation shows that the setsP j2
j1

also lie in
thea > ( j1+ j2)/j1 half-plane. Any parameter point inP with a > 3 belongs to one of
the domainsP j2

j1
. As far as the shape of these regions is concerned, note that the graph

of d+j is asymptotic from below to the graph ofcj , while the graph ofd−j is asymptotic
from above to the linec∞ (i.e., tob = a− 1; see Figure 6). Furthermore, we have the
relations

a < (>)
j1+ j2+ 1

j1
⇒ d−j1 (a) > (<)d+j2+1(a),

a < (>)
j1− 1+ j2

j1− 1
⇒ d+j2 (a) < (>)d−j1−1(a).

By Proposition 3.2, for(a, b) ∈ P j2
j1

, the setI containsj2− j1+ 1 adjacent intervals
of the form

L j = [zj , zj+1], j = j1, . . . , j2,



Micro-Chaos in Digital Control 423

Fig. 7. The attractive setA in case ofa = 5/2, b = 13/8, j1 = 6,
j2 = 7.

such that on each of these intervalsF admits a horseshoe-type dynamics (see formula
(3.3) and Figure 5). The union of these intervals is usually not invariant underF ; however,
it is contained in the set

A = [F−( j1− 1), F+( j2+ 1)] = [(a− b)( j1− 1), (a− b)( j2+ 1)+ b], (3.9)

which will be of central importance to us. Figure 7 explains the construction ofA:
One looks for the minimal invariant set which captures all the anticipated complicated
dynamics ofF , namely, the minimal invariant set containing all the intervals [zj , zj+1]
which are candidates for containing horseshoes. The following proposition makes this
statement more precise.

Proposition 3.3. A is a positively invariant attractive set.

Proof. We first show thatA is invariant under forward iterations of the mapF . Let us
observe that from the definition ofF we have

x ∈ [ j1, j2] ⇒ F(x) ∈ [F−( j1), F+( j2)). (3.10)

Since, by definition, for(a, b) ∈ P j2
j1

the conditionsH( j2 + 1) and H( j1 − 1) do not
hold, we can write

x ∈ [F−( j1− 1), j1] ⇒ F(x) ∈ [F−( j1− 1), F+( j1)),
x ∈ [ j2, F+( j2+ 1)] ⇒ F(x) ∈ [F−( j2), F+( j2+ 1)).

(3.11)

But (3.9), (3.10), and (3.11) implyF(x) ∈ Awheneverx ∈ A, and henceA is positively
invariant underF .
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We now show thatA attracts iterates of any point taken from the open interval

D0 = (zj1−1, zj2+2) ⊃ A. (3.12)

Let us consider somex0 ∈ D0 such that

x0 ∈ (zj1−1, F−( j1− 1)) ⇒ x0 < F(x0) < F+( j1− 1). (3.13)

This shows thatF has no fixed point in(zj1−1, F−( j1 − 1)]. Suppose that no iterate of
x0 falls inA. Then, by (3.13) all the iterates ofx0 fall in (zj1−1, F−( j1− 1)] and form a
bounded monotone sequence{Fn(x0)}∞n=0 with

lim
n→∞ Fn(x0) = x∗ ∈ (zj1−1, F−( j1− 1)]. (3.14)

Since on the interval(zj1−1, F−( j1−1)] the mapF ≡ Fj1−1 is continuous, we must have

F(x∗) = x∗,

which contradicts the fact thatF has no fixed point in(zj1−1, F−( j1 − 1)]. Hence we
obtained that for anyx0 ∈ (zj1−1, F−( j1−1)), there existsn1 > 0 such thatFn1(x0) ∈ A.
A similar argument shows that for anyx0 ∈ (F+( j2 + 1), zj2+2), there existsn2 > 0
such thatFn2(x0) ∈ A. Therefore,D0 is a subset of the domain of attractionD of the
setA.

We remark that the above argument proves thatA is globally attractive onI − {0}
if F has no fixed points outsideA ∪ {0}. If F does have fixed points outsideA, then
the full domainD of attraction ofA is an open subset ofI −A whose complement is a
Cantor set. We will discuss this in Theorem 4.4 in Section 4.

To analyze the properties of the setA further, we introduce a partition ofA into closed
intervals in two steps. First, we extend the set of the intervalsL j we already used in the
following way:

L j1−1 = [F−( j1− 1), zj1] = [(a− b)( j1− 1), b
a−1( j1− 1)],

L j = [zj , zj+1] = [ b
a−1( j − 1), b

a−1 j ], j ∈ { j1, . . . , j2},

L j2+1 = [zj2+1, F+( j2+ 1)] = [ b
a−1 j2, b+ (a− b)( j2+ 1)].

To prepare a further partition of these intervals in the second step, let us define the
nonnegative integersk−j andk+j as

k−j = min
{
k ∈ Z+ | F−k

j ( j ) < F+( j − 1)
}
, j ∈ { j1, j1+ 1, . . . , j2+ 1},

k+j = min
{
k ∈ Z+ | F−k

j+1( j ) > F−( j + 1)
}
, j ∈ { j1− 1, j1, . . . , j2}.

(3.15)
These integers are well-defined for parameter values(a, b) ∈ P j2

j1
, since

lim
k→∞

F−k
j ( j ) = zj < F+( j − 1), for all j ≤ j2+ 1,
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Fig. 8. Partition ofA in case ofa = 5/2, b = 25/16, j1 = 11, j2 = 14,
k0 = 2.

lim
k→∞

F−k
j+1( j ) = zj+1 > F−( j + 1), for all j ≥ j1− 1.

In the above definitions, the “inverse” ofFj in (2.2) is defined as

F−1
j (y) = 1

a
y+ b

a
( j − 1), y ∈ [F−( j − 1), F+( j )), j = j1− 1, . . . , j2+ 1;

thus it is understood thatF−k
j = F−(k−1)

j ◦ F−1
j always projects into [j − 1, j ) and

F0
j = I . The latter formula means that the integersk−,+j can also be zero if either

j < F+( j − 1) or j > F−( j + 1).
Let us fix the nonnegative integer

k0 = max
{
k+j1−1, . . . , k

+
j2
, k−j1 , . . . , k

−
j2+1

}
. (3.16)

The geometrical construction ofk−,+j shows that we in fact havek0 = max{k+j1−1, k
−
j2+1},

since the integersk−,+j cannot be greater than the integers betweenk+j1−1 andk−j2+1 in
(3.16). The table below (see also Figure 8) presents the full partition ofA into

K = 2( j2− j1+ 2)(k0+ 1)+ 2, (3.17)
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adjacent intervalsI p, which are now indexed fromp = 1 to p = K :

p Ip

L j1−1 : 1 [F−( j1− 1), j1− 1]
2 [ j1− 1, F−1

j1
( j1− 1)]

3 [F−1
j1
( j1− 1), F−2

j1
( j1− 1)]

. . . . . .

k0+ 2 [F−k0
j1
( j1− 1), zj1]

. . . . . . . . . . . . . . .

L j : 2( j − j1)(k0+ 1)+ k0+ 3 [zj , F−k0
j ( j )]

j ∈ { j1, . . . , j2} . . . . . .

2( j − j1)(k0+ 1)+ 2k0+ 3 [F−1
j ( j ), j ]

2( j − j1+ 1)(k0+ 1)+ 2 [ j, F−1
j+1( j )]

. . . . . .

2( j − j1+ 1)(k0+ 1)+ k0+ 2 [F−k0
j+1 ( j ), zj+1]

. . . . . . . . . . . . . . .

L j2+1 : 2( j2− j1+ 1)(k0+ 1)+ k0+ 3 [zj2+1, F−k0
j2+1( j2+ 1)]

. . . . . .

2( j2− j1+ 1)(k0+ 1)+ 2k0+ 3 [F−1
j2+1( j2+ 1), j2+ 1]

2( j2− j1+ 2)(k0+ 1)+ 2= K [ j2+ 1, F+( j2+ 1)].
(3.18)

This partition clearly depends on the parametersa andb through the integersj1 and j2,
the fixed pointszj , and the functionsF−, F+, andF−k

j .

Proposition 3.4. Let us fix2 ≤ j1 ≤ j2 positive integers. Then for any(a, b) ∈ P j2
j1

,
the following hold:

(i ) We have
(i 1) F(I1) ⊃ Ik0+3 provided

b ≥ g−j1 (a) =
a2(a− 1)( j1− 1)

a2( j1− 1)− a+ 1
; (3.19)

(i 2) F(I p) = I p−1 for any p∈ {2, . . . , k0+ 1};
(i 3) F(Ik0+2) = Ik0+1 ∪ Ik0+2.
(i i ) For any integer j∈ { j1, . . . , j2} we have
(i i 1) F(I p) = I p ∪ I p+1 for p = 2( j − j1)(k0+ 1)+ k0+ 3;
(i i 2) F(I p) = I p+1 for any

p ∈ {2( j − j1)(k0+ 1)+ k0+ 4, 2( j − j1)(k0+ 1)+ 2k0+ 2};
(i i 3) F(I p) ⊃ ∪p+k0+2

q=p+1 Iq for p = 2( j − j1)(k0+ 1)+ 2k0+ 3;

(i i 4) F(I p) ⊃ ∪p−1
q=p−k0−2Iq for p = 2( j − j1+ 1)(k0+ 1)+ 2;

(i i 5) F(I p) = I p−1 for any
p ∈ {2( j − j1+ 1)(k0+ 1)+ 3, 2( j − j1+ 1)(k0+ 1)+ k0+ 1};

(i i 6) F(I p) = I p−1 ∪ I p for p = 2( j − j1+ 1)(k0+ 1)+ k0+ 2.
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(i i i ) We have
(i i i 1) F(I p) = I p ∪ I p+1 for p = 2( j2− j1+ 1)(k0+ 1)+ k0+ 3;
(i i i 2) F(I p) = I p+1 for any

p ∈ {2( j2− j1+ 1)(k0+ 1)+ k0+ 4, 2( j2− j1+ 2)(k0+ 1)};
(i i i 3) F(IK−1) ⊃ IK where K− 1= 2( j2− j1+ 2)(k0+ 1)+ 1;
(i i i 4) F(IK ) ⊃ F(IK−k0−2) provided

b ≤ g+j2 (a) =
a2(a− 1)( j2+ 1)

a2 j2+ a− 1
. (3.20)

Proof. We sketch the calculations for each statement of the proposition in order.
(i1) Since

F(I1) ⊃ [F(F−( j1− 1)), F+( j1− 1)) ,

Ik0+3 =
[
zj1, F−k0

j1
( j1)

]
, (3.21)

for statement (i1) to hold we first require

Fj1−1((a− b)( j1− 1)) ≤ zj1 ⇔

a(a− b)( j1− 1)− ( j1− 2)b ≤ b

a− 1
( j1− 1) ⇔ b ≥ g−j1 (a).

The second requirement

F−k0
j1
( j1) < F+( j1− 1),

arising from (3.21), is always fulfilled because of the construction of the integerk0 (see
(3.16)).
(i2) For p = 2,

F(I2) =
[
F( j1− 1), F(F−1

j1
( j1− 1))

]
=
[
F−( j1− 1), F−0

j1
( j1− 1)

]
= I1,

while for anyp ∈ {3, . . . , k0+ 1},

F(I p) =
[
F(F−(p−2)

j1
( j1)), F(F−(p−1)

j1
( j1))

]
=
[
F−(p−3)

j1
( j1), F−(p−2)

j1
( j1)

]
= I p−1.

(i3)

F(Ik0+2) =
[
F(F−k0

j1
( j )), F(zj1)

]
=
[
F−(k0−1)

j1
( j ), zj1

]
=
[
F−(k0−1)

j1
( j ), F−k0

j1
( j )
]
∪
[
F−k0

j1
( j ), zj1

]
= Ik0+1 ∪ Ik0+2.

(ii1) The calculation is similar to that of (i3) above.
(ii2) Do as in (i2).
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(ii3) For p = 2( j − j1)(k0+ 1)+ 2k0+ 3,

F(I p) ⊃
[
F(F−1

j ( j )), F+( j )
]
,

∪p+k0+2
q=p+1 Iq =

[
j, F−k0

j+1 ( j + 1)
]
. (3.22)

On the right-hand sides of these expressions, the lower boundaries of the intervals coin-
cide. For the upper boundaries we require

F−k0
j+1 ( j + 1) < F+( j ),

which is always true as it immediately follows from the definitions ofk0 andk−j+1 (see
(3.15) and (3.16)).
Note that (ii1–ii3) reduces to the single formula

F(I p) ⊃ I p ∪ I p+1 ∪ I p+2 for p = 2( j − j1)+ 3 if k0 = 0.

(ii4) The calculation is the same as above with reference to the definition of the integer
k+j−1.
(ii5) Repeat the above calculation in (i2).
(ii6, iii1) As in (i3).
(iii2) As in (i2).
(iii3) The explanation for the special handling of the intervalIK−1 is the fact that
F(IK−1) 6= F(IK−1), sinceF is upper semicontinuous; that is,F( j2+1) 6= F+( j2+1).
Thus,

F(IK−1) ⊃
[
F(F−1

j2+1( j2+ 1)), F+( j2+ 1)
]
= IK .

Note that (iii1)–(iii3) appears in the form

F(IK−1) ⊃ IK−1 ∪ IK if k0 = 0.

(iii4) We have

F(IK ) = [F−( j2+ 1), F(F+( j2+ 1))] ,

IK−k0−2 =
[
F−k0

j2+1( j2), zj2+1

]
; (3.23)

thus for statement (iii4) we need to satisfy

F−k0
j2+1( j2) > F−( j2+ 1),

which is guaranteed by the definition ofk0 andk+j2 . The condition for the upper boundaries
in (3.23) yields

zj2+1 ≤ Fj2+2((a− b)( j2+ 1)+ b) ⇔
b

a− 1
j2 ≤ a(a− b)( j2+ 1)+ ab− ( j2+ 1)b ⇔ b ≤ g+j2 (a).

This completes the proof.
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Fig. 9.The parameter domainsQj2
j1

.

Let us fix the integers 2≤ j1 ≤ j2 and define the set

G j2
j1
=
{
(a, b) ∈ P | g−j1 (a) ≤ b ≤ g+j2 (a)

}
.

The analysis of the conditions (3.19) and (3.20) by solvingg−j1 (a) = g+j2 (a) shows that

the setG j2
j1

is nonempty for all real values ofa if j2 < 3 j1 − 4, and lies in the open
half-plane given by

a >
1

2( j1− 1)

(
j1+ j2+

√
j 2
2 + 2 j2(2− j1)− (3 j 2

1 − 4 j1)

)
.

The graphg+j2 is asymptotic from below to the graphcj2+1, while the graphg−j1 is asymp-
totic from above to the linec∞. We will use the parameter domain

Qj2
j1
= P j2

j1
∩ G j2

j1
(3.24)

=
{
(a, b) ∈ P | b ∈ (d−j1 (a), d−j1−1(a)] ∩ [d+j2+1(a), d

+
j2
(a)) ∩ [g−j1 (a), g

+
j2
(a)]

}
.

Some of these domains and some curvesg+,−j are shown in Figure 9. Note that

a < (>) j1 ⇒ d−j1 (a) > (<)g−j1 (a),

a < (>) 1
2 +

√
1
4 + j2 ⇒ d+j2 (a) < (>) g+j2 (a).

The domainsQj2
2 are substantially smaller than their supersetP j2

2 , but the difference is
less and less with increasing values ofj1 (compare, e.g.,P3

3 andQ3
3).
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We now define the matrixA ∈ RK×K by letting

ai j =
{

1 if F(Ii ) ⊃ I j ,
0 otherwise.

(3.25)

The following result is an immediate consequence of Proposition 3.4.

Corollary 3.5. Let us fix the parameters a and b in the definition of the map F and
assume that for some integers2≤ j1 ≤ j2 (a, b) ∈ Qj2

j1
holds. Then at least the following

elements of the matrix A are nonzero:

a1,k0+3 = 1; aK ,K−k0−2 = 1;
app = 1,
p ∈ {2( j − j1+ 1)(k0+ 1)+ k0+ 2, 2( j − j1+ 1)(k0+ 1)+ k0+ 3},
j ∈ { j1− 1, . . . , j2};
ap,p+1 = 1,
p ∈ {2( j − j1)(k0+ 1)+ k0+ 3, 2( j − j1)(k0+ 1)+ 2k0+ 3},
j ∈ { j1, . . . , j2+ 1};
ap,p−1 = 1,
p ∈ {2( j − j1+ 1)(k0+ 1)+ 2, 2( j − j1+ 1)(k0+ 1)+ k0+ 2},
j ∈ { j1− 1, . . . , j2};
ap,p+2 = · · · = ap,p+k0+2 = 1,
p = 2( j − j1)(k0+ 1)+ 2k0+ 3, j ∈ { j1, . . . , j2};
ap,p−k0−2 = · · · = ap,p−2 = 1,
p = 2( j − j1+ 1)(k0+ 1)+ 2, j ∈ { j1, . . . , j2}.

(3.26)

As an example, let us consider the case ofj2− j1 = 1 andk0 = 2, i.e., whenK = 20.
Then the structure of the matrixA will be the following:

· · · · 1 · · · · · · · · · · · · · · 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 · · · · · · · · 0
0 · · 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1· · 0
0 · · · · · · · · 1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 · · · · · · · · · · · · · · 1 · · · ·
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Here· denotes elements which may be either 0 or 1 depending on the actual values of
the parametersa andb.

The following result is fundamental in our upcoming description of the symbolic
dynamics inA.

Proposition 3.6. Let us fix the parameters a and b in the definition of the map F and
assume that for some integers2 ≤ j1 ≤ j2 (a, b) ∈ Qj2

j1
holds. Then all the entries of

AK−1 are nonzero.

Proof. The(p,q)-th entry ofAn can be written as

an
pq =

K∑
i1,...,in−1=1

api1ai1i2 · · ·ain−2in−1ain−1q. (3.27)

Since all the entries ofA are nonnegative, (3.27) is nonzero if there exists at least one
nonzero product in the sum. In the following, we trace in five steps as the nonzero
elements inAn wander with increasingn and as they finally spread into all the entries of
AK−1. We will use the nonzero elements ofA presented in Corollary 2.5 without explicit
reference to those formulas, and also make use of the fact thatan

pp 6= 0 wheneverapp = 1.

(1) The entries ofAk0+1 are nonzero at the following indices:
(i) At (k0+ 2, 1), (k0+ 2, 2), . . . , (k0+ 2, k0+ 2), since

an−1
k0+2,k0+2ak0+2,k0+1ak0+1,k0 · · ·an+1,n 6= 0 ⇒

ak0+1
k0+2,n 6= 0 for anyn ∈ {1, . . . , k0}.

(ii) Similarly, at(K−k0−1, K−k0−1), (K−k0−1, K−k0), . . . , (K−k0−1, K ).
(iii) At (p, p), (p, p + 1), . . . , (p, p + 2k0 + 2) for p =

2( j − j1)(k0+ 1)+ k0+ 3, j ∈ { j1, . . . , j2}, since

ak0−n−1
pp ap,p+1ap+1,p+2 · · ·ap+n−1,p+n 6= 0 ⇒

ak0+1
p,p+n 6= 0 for anyn ∈ {0, . . . , k0+ 1},

and

ap,p+1ap+1,p+2 · · ·ap+k0−1,p+k0ap+k0,p+n 6= 0 ⇒

ak0+1
p,p+n 6= 0 for anyn ∈ {k0+ 2, . . . ,2k0+ 2}.

(iv) Similarly, at (p, p − 2k0 − 2), (p, p − 2k0 − 1), . . . , (p, p) for p = 2( j −
j1+ 1)(k0+ 1)+ k0+ 2, j ∈ { j1, . . . , j2}.

(2) The entries ofA( j2− j1+2)(k0+1) are nonzero at the following indices:
(i) At (k0+ 3, k0+ 3), (k0+ 3, k0+ 4), . . . , (k0+ 3, K ) since

a j2− j+1
k0+3,k0+3ak0+1

k0+3,3k0+5ak0+1
3k0+5,5k0+7 · · ·

· · ·ak0+1
2( j− j1)(k0+1)+k0+3,2( j− j1)(k0+1)+k0+3+n 6= 0 ⇒
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a( j2− j1+1)(k0+1)
k0+3,2( j− j1)(k0+1)+k0+3+n 6= 0,

for anyn ∈ {0, . . . ,2(k0+ 1)}, j ∈ { j1, . . . , j2}, and
for anyn ∈ {0, . . . , k0+ 2}, j = j2+ 1.

(ii) Similarly, at (K − k0− 2, 1), (K − k0− 2, 2), . . . , (K − k0− 2, K − k0− 2).
(3) The entries ofA( j2− j1+2)(k0+1)+1 are nonzero at the following indices:

(i) At (1, k0+ 3), (1, k0+ 4), . . . , (1, K ) since

a1,k0+3a( j2− j1+1)(k0+1)
k0+3,n 6= 0 ⇒

a( j2− j1+2)(k0+1)+1
1,n 6= 0 for anyn ∈ {k0+ 3, . . . , K }.

(ii) Similarly, at (K , 1), (K , 2), . . . , (K , K − k0− 2).
(4) The entries ofA( j2− j1+2)(k0+1)+k0+2 are nonzero at the following indices:

(i) At (k0 + 2, 1), (k0 + 2, 2), . . . , (k0 + 2, K ) in the wholek0 + 2-nd row, i.e.,
a( j2− j1+2)(k0+1)+k0+2

k0+2,q 6= 0, q ∈ {1, . . . , K }, since

ak0+1
k0+2,1a( j2− j1+2)(k0+1)+1

1,n 6= 0 ⇒

a( j2− j1+2)(k0+1)+k0+2
k0+2,n 6= 0 for anyn ∈ {k0+ 3, . . . , K },

and

a( j2− j1+2)(k0+1)+1
k0+2,k0+2 ak0+1

k0+2,n 6= 0 ⇒

a( j2− j1+2)(k0+1)+k0+2
k0+2,n 6= 0 for anyn ∈ {1, . . . , k0+ 2}.

(ii) Similarly, at (K − k0− 1, 1), (K − k0− 1, 2), . . . , (K − k0− 1, K ), i.e., in the
whole K − k0− 1-st row.

(5) The entries ofA2( j2− j1+2)(k0+1)+1 = AK−1 are nonzero at the following indices:
(i) At (p,q) for all p = 2( j − j1 + 1)(k0 + 1) + 2+ n, n ∈ {0, . . . , k0}, j ∈
{ j1, . . . , j2} andq ∈ {1, . . . , K } since

ap,p−1ap−1,p−2 · · ·a2( j− j1+1)(k0+1)+3,2( j− j1+1)(k0+1)+2·

·a2( j− j1+1)(k0+1)+2,2( j− j1)(k0+1)+k0+2 · · · . . . · · ·

· · · . . . · · ·a4k0+7,4k0+6a4k0+6,3k0+4a3k0+4,3k0+3 · · ·

· · ·a2k0+6,2k0+5a2k0+5,2k0+4a2k0+4,k0+2·

·a( j2− j+1)(k0+1)−1−n
k0+2,k0+2 a( j2− j1+2)(k0+1)+k0+2

k0+2,q 6= 0 ⇒ aK−1
pq 6= 0.

(ii) Similarly, at (p,q) for all p = 2( j − j1)(k0 + 1) + k0 + 3 + n, n ∈
{0, . . . , k0}, j ∈ { j1, . . . , j2} andq ∈ {1, . . . , K }.
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(iii) At (p,q) for all p ∈ {1, k0+ 2} andq ∈ {1, . . . , K }, since

ap,p−1 · · ·a32a21a1,k0+3ak0+1
k0+3,2k0+4a2k0+4,k0+2·

·a( j2− j1+1)(k0+1)−2−p
k0+2,k0+2 a( j2− j1+2)(k0+1)+k0+2

k0+2,q 6= 0 ⇒ aK−1
pq 6= 0.

(iv) Similarly, at(p,q) for all p ∈ {K − k0− 1, K } andq ∈ {1, . . . , K }.
The subcases (i–iv) cover all the possible indices inAK−1; that is,aK−1

pq 6= 0 for any
p,q ∈ {1, . . . , K }.

This completes the proof of the proposition.

We are now in the position to prove that under the conditions of the previous propo-
sition the invariant setA cannot be decomposed into smaller invariant sets of nonzero
measure.

Proposition 3.7. Let us suppose that the assumptions of Proposition 3.6 hold. Then F
is topologically transitive onA.

Proof. We have to show that ifU,V ⊂ A are disjoint open sets, then there existsn ≥ 1
such thatFn(U ) ∩ V 6= ∅. We will prove this in two steps. First, we show that for any
open setU ⊂ A there exists an integerm ≥ 1 such thatFm(U ) contains a full interval
I p of the partition (3.18) for some 1≤ p ≤ K . Let us suppose the contrary, i.e.,U
is a connected open interval inA such that its image underFm does not contain a full
interval I p for arbitrarym≥ 1. Letl (W) denote the length of an open connected interval
W and let

L = l (U ).

Now U must have a connected open subsetU1 ⊂ U such thatF is continuous onU1.
Moreover, by our assumption onU , U1 can be chosen such that

l (U1) >
L

2
.

ThenF(U1) is a connected open set with

l (F(U1)) >
La

2
,

and it has a connected open subsetU2 ⊂ F(U1) on whichF is continuous and

l (U2) >
La

4
.

This again implies that

l (F(U2)) >
La2

4
.
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Moreover, by assumption,F(U2) does not contain a full intervalI p; hence it has a
connected open subsetU3 ⊂ F(U2) on whichF is continuous and

l (U3) >
La2

8
.

Repeating this construction, we can build a sequence{Um}∞m=1 of connected open sets,
such that none of these contains a full intervalI p and hence their lengths satisfy

l (Um) < 1. (3.28)

On the other hand, as above, we have the estimate

l (Um) >
1

2
L
(a

2

)m−1
. (3.29)

SinceL 6= 0 and(a, b) ∈ P j2
j1

impliesa > 2, (3.29) contradicts (3.28) form sufficiently
large, which completes the first part of the proof.

Using this result we may now assume that for somem≥ 1, Fm contains a full interval
I p for some 1≤ p ≤ K . SinceV ⊂ A is open, there existsq ∈ {1, . . . , K } such that
(Iq − ∂ Iq) ∩ V 6= ∅. By Proposition 3.6, we have

aK−1
pq 6= 0;

hence we can find an index sequencei1, . . . , i K−2 such that

api1ai1i2 · · ·ai K−2,q 6= 0.

By (3.25) this means that

F(I p) ⊃ Ii1,

F2(I p) ⊃ F(Ii1) ⊃ Ii2,

...

F K−1(I p) ⊃ F K−2(Ii1) ⊃ F K−3(Ii2) ⊃ · · · ⊃ Iq,

implying

F K−1+m(U ) ∩ V ⊃ F K−1(I p) ∩ V ⊃ (Iq − ∂ Iq) ∩ V 6= ∅,

which concludes the proof.

We now summarize the results of this section in the following theorem.

Theorem 3.8. Let us fix the parameters a and b in the definition of F and assume that
for some integers2 ≤ j1 ≤ j2, (a, b) ∈ Qj2

j1
holds. Then the setA ⊂ I defined in (3.9)

is a hyperbolic strange attractor for the map F.
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Proof. By Propositions 3.3 and 3.7,A is a closed, indecomposable attracting set, and
hence it is an attractor. By Propositions 3.1 and 3.7,F is a chaotic map restricted toA,
and henceA is a strange attractor. Finally,F ′(x) = a > 1 for anyx ∈ A (the upper
derivative ofF always exists), and henceA is hyperbolic.

The above theorem proves that the setA is a strange attractor in the parameter domains
Qj2

j1
. One of the main ingredients used in the proof is the topological transitivity of the

map F on A. We established this property ofF in Proposition 3.7 using symbolic
dynamics based on a partition ofA. Our construction required conditions (3.20) and
(3.19), which restrict the domain of existence of the attractorA in the parameter plane.
It appears, however, that more involved interval decompositions ofA would yield the
topological transitivity ofF on larger parameter domains that would ultimately cover
the whole domainP j2

j1
with the exception of a measure zero set. We also remark that

the simplest possible partition ofA corresponds tok0 = 0, in which case the domain
of existence ofA is substantially smaller than what we obtained for more sophisticated
partitions withk0 > 0.

4. Symbolic Dynamics onA

In this section we will examine the dynamics within the attractorAmore closely. As the
reader can expect, the partition of the last section can be used to introduce a symbolic
characterization ofA. In fact, {I j }Kj=1 is aMarkov partitionof A (see, e.g., [2]). Since
our map is not even continuous over this partition, we provide here more details than
usual for the construction which is standard for Markov transformations (our mapF is
not Markov in the sense of, e.g., [3] or [4]).

As a first step, we slightly modify the partition ofA used in the previous section.
Namely, we let

Î p = I p, p = 1, . . . , K − 1,

Î K = [ j2+ 1, F+( j2+ 1)− ε],
(4.1)

where K and I p are defined in (3.17) and (3.18), respectively, andε ≥ 0 is a yet
undetermined small parameter. Note that forε > 0 this partition does not cover all of
the attractorA. We also change the definition of the matrixA by definingÂ ∈ RK×K as

âi j =
{

1 if F(Ii ) ⊃ I j ,
0 otherwise.

(4.2)

Notice that we now requireF(Ii ) (as opposed to its closure in (3.25) to contain the
interval I j for the casêai j = 1). The reason for these changes is that for our construction
we will need the preimage of anyIi underF to be aclosedsubset ofI j whenever̂ai j 6= 0.
Of course, we would like to retain the nice properties ofA for our modified set-up, which
can be achieved by the proper choice of the parameterε in (4.1).

Proposition 4.1. Let us fix the parameters a and b in the definition of the map F and
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assume that for some integers2≤ j1 ≤ j2, (a, b) ∈ Q̂ j2
j1

holds with

Q̂ j2
j1
=
{
(a, b) ∈ P |∈ (d−j1 (a), d−j1−1(a)] ∩ [d+j2+1(a), d

+
j2
(a)) ∩ [g−j1 (a), g

+
j2
(a))

}
.

(4.3)
Then we can selectε > 0 small in (4.1) such that A= Â. In particular, all the entries
of ÂK−1 are nonzero.

Proof. A quick review of the statements of Proposition 3.4 shows that forε = 0 in (4.1)
all the entries ofA and Â are the same except for

1= aK−1,K 6= âK−1,K |ε=0 = 0.

However, one can select some appropriately small

0< ε < F+( j2+ 1)− F−1
j2+2(zj2+1)

such that

F( Î K−1) ⊃ Î K

is satisfied and

F( Î K ) ⊃ Î K−k0−2

still holds, which implies

âK−1,K |ε>0 = 1,

with all the other entries of̂A equal to the respective entries ofA.

Note the slight restriction on the parameter set by usingQ̂ j2
j1
⊂ Qj2

j1
in (4.3) instead

of (3.24). This is needed for the construction ofε in the above proposition.
In view of Proposition 4.1, we now fix(a, b), select an appropriateε > 0, and drop

the hats fromÂ, Î K , andQ̂ j2
j1

, keeping their new definitions in mind.
We start the description of the dynamics on the setA by introducing the set

K = {1, 2, . . . , K },
and considering the set of semi-infinite symbol sequences

6A = {s= s0s1 · · · si · · · | si ∈ K, asi si+1 = 1, i ∈ Z+}.
As is well known (see, e.g., [18]),6A is a complete metric space with the metric

d(s, s̄) =
∞∑

i=0

1

2i

|si − s̄i |
1+ |si − s̄i | . (4.4)

This metric has the following two properties:

(1) If si = s̄i for i = 0, . . . , N thend(s, s̄) < 1/2N .
(2) If d(s, s̄) < 1/2N+1 thensi = s̄i for i = 1, . . . , N.



Micro-Chaos in Digital Control 437

The matrixA is usually called thetransition matrixcorresponding to the space6A.
It can be shown that ifA is irreducible, then6A is a compact, totally disconnected,
and perfect space—in other words, aCantor set. The irreducibility of A means that it
has some power with all nonzero elements; hence in our caseA is irreducible if the
conditions of Proposition 4.1 hold. On6A one can define a map

πA: 6A→ 6A,

s= s0s1s2 · · · 7→ s̃= s1s2s3 . . . ,

which is asubshift of finite typewith transition matrixA. The mapπA has

(1) a countable infinity of periodic orbits,
(2) an uncountable infinity of nonperiodic orbits,
(3) a dense orbit.

In the following we will show thatA has a subset on whichF behaves in much the
same way asπA.

Let

E = ∪K
p=1∂ I p (4.5)

be the set containing all the boundary points of the intervalsI1, . . . , IK and define the
sets

L = A ∩ ∪s∈6A ∩∞i=0 F−i (Isi ), B = L ∩ ∪∞i=0F−i (E), 3 = L− B, (4.6)

and the map

S: 6A→ L,
s 7→ x, ⇔ Fi (x) ∈ Isi , for all i = 0, 1, . . . . (4.7)

We can now prove the following result.

Proposition 4.2. Suppose that the conditions of Proposition 4.1 hold. Then

(i) The map S: 6A→ L is well-defined. In fact, it is a continuous surjection.
(ii) S|S−1(3) is a homeomorphism onto its image.

(iii) F |L is topologically semiconjugate toπA, i.e., the following diagram commutes:

6A
S−−−−→ L

πA

y yF

6A −−−−→
S

L

Proof. To prove (i), we first show that for anys ∈ 6A the set

G = ∩∞i=0F−i (Isi )
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is not empty. Lets= s0s1 · · · ∈ 6A. By the definition of6A we know that

F(Is0) ⊃ Is1 ⇔ G1 = F−1(Is1) ∩ Is0 6= ∅.

Furthermore,G1 is a closed subset ofIs0 (even if Is0 contains a discontinuity ofF , as
one can easily see). We also know from the definition of6A that

F(Is1) ⊃ Is2 ⇔ F−1(Is2) ∩ Is1 6= ∅,

and hence

G2 = F−1(F−1(Is2) ∩ Is1) ∩ Is0 ⊂ G1

is a nonempty closed set. In general,

Gj = F−1(. . . (F−1(F−1(Isj ) ∩ Isj−1) ∩ . . .) ∩ Is1) ∩ Is0 = ∩ j
i=0F−i (Isi ) ⊂ Gj−1

is a nonempty closed set. Then

G = · · · ⊂ Gj ⊂ Gj−1 ⊂ · · · ⊂ G1 ⊂ G0 ≡ Is0, (4.8)

as the intersection of a nested sequence of closed nonempty intervals, is nonempty.
This result implies that for anys ∈ 6A there existsx ∈ L such thatFi (x) ∈ Isi for

all i ∈ Z+. If this x is unique, then the mapS is well-defined. Suppose the contrary,
i.e., there existsy 6= x in L with Fi (y) ∈ Isi for all i ∈ Z+. Then no iterate of the
open intervalU = (x, y) underF contains a full intervalIk which contradicts our first
observation in the proof of Proposition 3.7.

The fact thatS is onto follows immediately from the definition ofL, since ifx ∈ L
then there existss ∈ 6A such that

x ∈ ∩∞i=0F−i (Isi ) ⇔ S(s) = x.

We now show thatS is continuous. Let us fixε > 0 and let

δ(ε) = 1

2N(ε)+1
, N(ε) = Int

(
loga

1

ε

)
+ 1.

By property(2) of the metricd in (4.4), if s̄ ∈ 6A, then

d(s, s̄) < δ ⇒ si = s̄i , i = 1, . . . , N(ε),

implying

S(s), S(s̄) ∈ ∩N(ε)
i=0 F−i (Isi ).

Since the lengthl (Ik) of any intervalIk is less than 1, we have

|S(s)− S(s̄)| < 1

aN(ε)
l (IsN(ε) ) <

1

aN(ε)
< ε,

and henceS is continuous, which proves statement (i).
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Clearly,S is one-to-one over the setS−1(3), and thusS−1 is well-defined on this set.
Indeed, sinceF is well-defined, for anyx ∈ 3 there exists a unique sequences0, s1, . . .

such thatFi (x) ∈ Isi , i ∈ Z+. Consequently, to prove (ii) we only have to show that
S−1 is continuous. SinceF j is continuous on3, for anyx ∈ 3 andn ≥ 1, there exists
δ(n) > 0 such that ify ∈ 3, then

|x − y| < δ(n) ⇒ F j (x), F j (y) ∈ Isj , j = 1, . . . ,n,

with s= S−1(x). Fix ε > 0 and select

n = Int

(
log2

1

ε

)
+ 1.

If s̄= S−1(y), then by property (1) of the metricd defined in (4.4) we have

d(s, s̄) < ε,

and henceS−1 is continuous. This proves statement (ii).
Finally, considers = s0s1 · · · ∈ 6A. Then, by the definition ofπA, πA(s) = s1s2 · · ·

and

S◦ πA(s) = ∩∞i=1F−i (Isi ).

On the other hand,

S(s) = ∩∞i=0F−i (Isi ) ⇒ F ◦ S(s) = ∩∞i=1F−i (Isi ),

which proves that(F |L)◦S= S◦πA. We can therefore conclude that the semiconjugacy
claimed in statement (iii) of the proposition indeed holds.

We can summarize the main results of this section together with their consequences
as follows.

Theorem 4.3. Let us suppose that the conditions of Proposition 4.1 hold. Then

(i) 3 ⊂ A is a hyperbolic invariant Cantor set for the map F, on which F is topo-
logically semiconjugate to a one-sided subshift on K symbols with the irreducible
transition matrix A.

(ii) Let n ≥ 2 be an integer. Then on3 F has

N(n) = 1

n

(
Tr An −

∑
〈i,n〉

i N (i )

)
(4.9)

distinct periodic orbits of minimal period n, where the notation〈i, n〉 refers to
integers1≤ i < n which divide n.

(iii) F has an uncountable infinity of nonperiodic orbits and an orbit which is dense
in 3.
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Proof. Statement (i) follows directly from Propositions 4.2 and the properties ofA listed
in (3.26) in accordance with Proposition 3.6. Statement (iii) follows from the properties
of6A andπA (see, e.g., [18]). By the topological semi-conjugacy ofF toπA, it is enough
to show that (4.9) in (ii) holds forπA.

Let us count the number of distinct periodic orbits of periodn for πA. Any of these
periodic orbits is associated with a periodic sequences0s1 · · · sns0s1 · · · sn · · · . The num-
ber ofn-long symbol sequences beginning withp and ending withq, which can appear
within an elements of 6A, is exactly the number of nonzero terms in the sum

K∑
i1,...,in−1=1

api1ai1i2 · · ·ain−2in−1ain−1q = an
pq.

Therefore, the number of possiblen-long periodic symbol sequences is given by

P(n) =
K∑

p=1

an
pp = Tr An.

Some of these orbits, however, have prime periods lower thann. The number of these
are subtracted fromP(n) in (4.9). Furthermore, ifn infinite symbol sequences form an
n-periodic orbit forπA, the above argument counts that single orbitn times, depending
on which of then symbol sequences we start iteratingπA at. Based on these observations,
the formula in (ii) follows.

We finish this section with a statement on the domain of attraction of the chaotic
attractorA. In the previous section we saw that it always contains the open setD0

defined in (3.12).

Theorem 4.4. Let us suppose that the conditions of Proposition 4.1 are satisfied and
letD denote the domain of attraction ofA. Moreover,

(i) suppose that j1 = 2 and j2 = N − 1 with N defined in (2.6), i.e., F has no fixed
points outsideA ∪ {0}. ThenD = I − {0}.

(ii) Suppose that there exists j with j2 < j ≤ N − 1 such that

b ≤ h+j (a) =
j (a2− 1)

j (a+ 1)− a

holds. Then the interval

[zj , F+( j )] =
[

b( j − 1)

a− 1
, (a− b) j + b

]
contains an invariant Cantor setCj 6⊂ D. OnCj F is topologically conjugate to a
one-sided subshift on two symbols with transition matrix

Aj =
(

1 1
1 0

)
.
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(iii) Suppose that there exists j with1≤ j < j1 such that

b ≥ h−j (a) =
j (a2− 1)

j (a+ 1)− 1

holds. Then the interval

[F−( j ), zj+1] =
[
(a− b) j,

bj

a− 1

]
contains an invariant Cantor setCj 6⊂ D with properties as in (ii) above.

Proof. Statement (i) follows from the proof of Proposition 3.3, so we start with the
proof of (ii). Let us define the intervals

J1 = [zj , j ] =
[

b( j − 1)

a− 1
, j

]
,

J2 = [F−1
j+1, F+( j )] =

[
b(aj − 1)

a(a− 1)
, (a− b) j + b

]
.

We then have

F(J1) = [zj , F+( j )] ⊃ J1 ∪ J2. (4.10)

Furthermore, we have

F(J2) = [Fj+1(F
−1
j+1(zj )), Fj+1(F+( j ))] =

[
b( j − 1)

a− 1
,a ((a− b) j + b)− jb

]
,

which implies

F(J2) ⊃ J1 ⇔ a ((a− b) j + b)− jb ≥ j ⇔ b ≤ h+j (a). (4.11)

Then using the same methods as in Proposition 4.2, one obtains statement (ii) from (4.10)
and (4.11).

Similarly, to prove (iii) we let

J2 = [F−( j ), F−1
j (zj+1)] =

[
(a− b) j,

b (a( j − 1)+ 1)

a(a− 1)

]
,

J1 = [ j, zj+1] =
[

j,
bj

a− 1

]
.

We then have

F(J1) = [F−( j ), zj+1] ⊃ J1 ∪ J2, (4.12)

and

F(J2) = [Fj (F−( j )), Fj (F
−1
j (zj+1))] =

[
a(a− b) j − ( j − 1)b,

bj

a− 1

]
,

from which we obtain

F(J2) ⊃ J1 ⇔ a(a− b) j − ( j − 1)b ≤ j ⇔ b ≥ h−j (a). (4.13)

Again, (4.12) and (4.13) imply statement (iii) of the theorem.
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Remark 4.1. Note that the above theorem shows that ifF has no fixed points outside
A ∪ {0}, then iterating an arbitrary pointx ∈ A ∪ {0}, we monotonically approach the
attractorAand become under the influence of the chaotic dynamics insideA. If, however,
F has fixed points outsideA∪ {0}, then there may exist an open set of initial conditions
inD−D0 such that the corresponding trajectories ofF first become under the influence
of chaotic invariant sets which are horseshoes forF2. In practice this means that the
trajectories undergo atransient chaosbefore they arrive at the chaotic attractor (see also
the iteration shown in Figure 7). This fact shows that even the domain of attractionD
of A may have a complex structure. In particular, the attractor may have a fractal basin
boundary (see, e.g., [14] for examples and details).

5. Some Properties of the Hyperbolic Set3 ⊂ A

Using the fact that the dynamics ofF restricted to3 is topologically semiconjugate to a
subshift of finite type, one can use general results on subshifts to characterizeF on this
invariant set. For example, thetopological entropy h̄F of F̄ ≡ F |3 (with respect to the
Lebesgue-measure onI ) can be computed as

hF̄ = log |λ|max, (5.1)

where|λ|max> 1 is the dominant eigenvalue of the transition matrixA (see, e.g., Mane
[12]). From this we immediately obtain the following.

Proposition 5.1. Suppose that the conditions of Corollary 3.5 are satisfied and all the
elements of A not listed in (3.26) are zero. Then we have

hF̄ ≤ log(k0+ 3),

with k0 defined in (3.16).

Proof. Note that under the conditions of Corollary 3.5 the sum of off-diagonal elements
in any row of A is at mostk0 + 2 while the diagonal element is at most 1 in any row.
Then the statement of the proposition is an immediate consequence of (5.1) and the
Gershghorin theorem (see, e.g., [5]).

Another characteristic quantity, the Ljapunov exponent ofF̄ , can directly be computed
from the definition ofF

µF̄ = µF = loga,

noting that the upper derivative ofF exists at any point ofI .
Although the Lebesgue measure of the set3 is zero, it still has a decisive effect on

the dynamics withinA. UsingµF̄ andhF̄ we can give an estimate for the “size” of the
invariant set3.



Micro-Chaos in Digital Control 443

Theorem 5.2. Suppose that the conditions of Proposition 4.1 hold. Then the Haussdorff-
dimension H D(3) and the capacity (or fractal dimension) C(3) of3 obey the estimates

H D(3),C(3) ≤ hF̄

µF̄
.

Proof. We first prove the estimate involving the Haussdorff-dimension of the hyperbolic
set. By definition,H D(3) is the infimum of the numbersα > 0, such that for anyε there
existδ > 0 and a covering{Ci }∞i=1 of3 by closed intervals (1-balls) such thatl (Ci ) < δ

and
∑

i l α(Ci ) < ε. First we will construct a covering of3 such that the length of the
individual closed intervals will be as small as needed.

Fix a numberj ∈ K and suppose thatx ∈ 3 ∩ I j . This implies the existence of a
uniques ∈ 6A with s0 = j such that

x ∈ Gn(s1, . . . , sn) = ∩n
i=0F−i (Isi ),

for anyn ≥ 0 integer. Therefore,

x ∈ 3 ∩ Is0 ⇒ x ∈ ∪as0,s1 ···asn−1,sn 6=0 Gn(s1, . . . , sn), (5.2)

and hence for anyn ≥ 0,3 ∩ Is0 can be covered by a number of

K∑
i1,...,in=1

as0,i1 · · ·ain−1,i n

intervals, and each has a length less than

δ(n) = 1

an
.

Hence, for anyn ≥ 0 we have a numberδ(n) > 0 such that3 can be covered by a
number of

N(δ(n)) =
K∑

i0,...,in=1

as0,i1 · · ·ain−1,in = ‖An‖s (5.3)

intervals, each with length less thanδ(n). Note that in (5.3)‖A‖s denotes the norm
obtained by summing all the elements of the nonnegative matrixA. To estimate the
Haussdorff-dimension of3, we seek the infimum ofα > 0 such that

lim
n→∞‖A

n‖s
(

1

an

)α
= 0 ⇔ lim

n→∞ log

(
‖An‖s

(
1

an

)α)
= −∞. (5.4)

By the equivalence of the norm‖ . ‖s to the Euclidean matrix norm‖ . ‖, requiring (5.4)
is equivalent to

lim
n→∞ log


√√√√ K∑

i=1

(λn
i )

2

(
1

an

)α = −∞, (5.5)
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whereλi denotes the eigenvalues ofA. From (5.5) a straightforward calculation gives

α ≤ log |λ|max

loga
= hF̄

µF̄
,

as claimed.
To prove the estimate on the capacity, we first note that by definition

C(3) = lim inf
ε→0

logn(ε)

log 1
ε

,

wheren(ε) is the number of intervals (1-balls) of lengthε which is necessary to cover
3. Using the covering constructed in the first part of the proof and lettingε = δ(n), we
can write

C(3) ≤ lim
n→∞

log‖An‖s
logan

= 1

loga
lim

n→∞
1

n
log‖An‖s = log |λ|max

loga
,

where this last inequality follows from the spectral radius formula (see, e.g., [1]).

In Theorem 5.2 we have used the topological definitions of the Haussdorff-dimension
and the capacity. For cases when typical trajectories may not approach the invariant
set in question, one can similarly define the metric versions of the entropy, Haussdorff-
dimension, and the capacity (see, e.g., [9]). A notable fact is that for subshifts of finite type
the topological entropy is the maximum of the metric entropies, as shown, e.g., in Man´e
[12] (in general, it is only the supremum of the metric entropies). If one can guarantee the
existence of an invariant ergodic measure for the mapF, then the (metric) Haussdorff-
dimension of the invariant set exactly equals the quotient of the (metric) entropy and
the Ljapunov exponent (see, e.g., [10] for a related result on one-dimensional, piecewise
continuous maps). In view of this, we make the following conjecture:

Conjecture 5.1. The estimates in the statement of Theorem 5.2 are in fact equalities,
i.e.,

H D(3) = C(3) = hF̄

µF̄
.

In accordance with this, we have the estimate

hF̄ < loga. (5.6)

We remark that estimate (5.6) holds in all the examples we considered with given
values of the parametersa andb.

5.1. An Example

Let

a = 2.5, b = 2. (5.7)
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Fig. 10.µ-chaos map witha = 5/2, b = 2.

For these parameter values the graph ofF is shown in Figure 10.
The formulas (2.6) and (2.5) provideN = 3 fixed points located at

z1 = 0, z2 = 4

3
, z3 = 8

3
.

The formulas (3.4) and (3.5) in Proposition 3.2 with the definition (3.8) of the parameter
domains of “instability” give

j1 = j2 = 2 ⇒ (a, b) = (2.5, 2) ∈ P2
2 .

Since

b = 2 ∈
[

75

38
,

225

112

]
= (d−2 (2.5), d−1 (2.5)] ∩ [d+3 (2.5), d

+
2 (2.5)) ∩ [g−2 (2.5), g

+
2 (2.5)]

is satisfied in (3.24) under conditions (3.20) and (3.19), we have the parameters

(a, b) = (2.5, 2) ∈ Q2
2,

satisfying the conditions of Theorem 3.8. Thus, the set

A =
[

1

2
,

7

2

]
defined in (3.9) is a hyperbolic strange attractor ofF . SinceF has no fixed points in
I −A∪{0}, by (i ) in Theorem 4.4 the domain of attraction for the attractorA is I −{0},
i.e., all trajectories starting away from the origin end up in the attractor.

The evaluation of formula (3.16) results ink0 = 0, so the symbolic dynamics onA
can be constructed withK = 6 intervals, as shown by (3.17). Based on the original
partition (3.18), we obtain the Markov-partition (4.1) in the form

I1 =
[

1

2
, 1

]
, I2 =

[
1,

4

3

]
, I3 =

[
4

3
, 2

]
,

I4 =
[
2,

8

3

]
, I5 =

[
8

3
, 3

]
, I6 =

[
3,

7

2
− ε

]
,
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whereε > 0 small exists due to

b = 2 ∈
[

75

38
,

225

112

)
⇒ (a, b) = (2.5, 2) ∈ Q̂2

2 ⊂ Q2
2.

Based on Proposition 4.1, the transition matrix takes the form

A =


0 0 1 0 0 0
1 1 0 0 0 0
0 0 1 1 1 0
0 1 1 1 0 0
0 0 0 0 1 1
0 0 0 1 0 0

,

as can also be checked in Figure 10. This transition matrix satisfies the conditions of
Proposition 5.1, which yields the preliminary estimate

hF̄ ≤ log 3

for the topological entropy ofF on3. However, Conjecture 4.3 suggests the refinement

hF̄ ≤ log 2.5,

which agrees well with the numerical result

hF̄ = log |λ|max' log 2.32.

Using Theorem 5.2, the Haussdorff- and fractal dimensions of the hyperbolic set3 ⊂ A
obey the estimate

H D(3),C(λ) <
log 2.33

log 2.5
.

Again, Conjecture 5.3 suggests that we in fact have

H D(3) = C(λ) ' log 2.32

log 2.5
= 0.92.

6. Conclusions

In this paper we studied the micro-chaos orµ-chaos mapF defined by

x 7→ ax− b Int(x), x ∈ I = [0,m], 0< a− 1< b < a.

This map has a central role in describing the local dynamics of digitally controlled
unstable systems. Such systems are subject to two discrete effects: sampling (a linear
effect), and round-off errors (a nonlinear effect). These two effects frequently cause
chaotic oscillations on a microscopic scale near a desired equilibrium of the system.

We proved the existence of a hyperbolic strange attractor for a large set of parameter
values for the mapF . We also studied its domain of attraction, which is of full measure,
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but may have a fractal boundary. This is due to the fact that the points not contained
in the domain of attraction form invariant Cantor sets for certain parameter values (see
Remark 4.1). We also described the dynamics on the attractor using symbolic dynamics.
We identified regions in the parameter space with the same type of symbolic dynamics.
This enabled us to draw an “instability chart” on the parameter plane to describe how the
nature of chaotic dynamics changes as the parameters are varied (see Figures 6 and 9).

Whenever quantized-state control is used, the unstable equilibrium of the open loop
remains unstable in the closed control loop. This instability does not necessarily result in
chaos: Chaos can be suppressed, e.g., by dry-friction effects. These effects, however, may
cause relatively large static errors in positioning. Hence one may have to put up with the
presence of micro-chaos if one wants to stay in the regime of viable design parameters.
In that case, our results can be used to reduce the size of the chaotic attractor, as well as
its distance from the unstable equilibrium. This means reducing the amplitude and the
mean value of chaotic oscillations to a level which is acceptable in a given problem. The
detailed knowledge of the symbolic dynamics within the chaotic attractor makes it easier
to identify statistical features of the irregular, micro-scale oscillations. This should also
be of use in the design of more advanced control strategies.

It is to be noted that in numerical experiments with the map (2.1), the finite number
of digits used in the computations are likely to introduce a further level of discretization
which is not present in our original problem. As a result, simulations of the map may
yield observable (i.e., stable) periodic solutions within the attractorA, which of course
contradicts the fact that the attractor is indecomposable. Related results can be found,
e.g., in Domokos [7].

We finally comment on some related results of Delchamps [6]. He considered digitally
controlledn-dimensional discrete problems and analyzed the one-dimensional case in
more detail. He studied essentially the same map as ourFm in (1.5), but defined on both
sides of the origin (this makes no difference since the map is odd). After identifying an
attracting set (which contains our attractorA), he proved the existence of an invariant
ergodic measure for ameasure zero, nowhere-dense set of the parameter space(a, b).
The construction of the measure would be necessary to compute the related entropy and
Haussdorff-dimension, but it is an unsolved problem in general. We note that Boyarsky
and Scarowsky [4] construct invariant ergodic measures for certain Markov maps, but
the micro-chaos mapF is not Markov in their sense.

We believe that by proving the existence of a chaotic attractor for large sets of pa-
rameter values, constructing instability charts, and characterizing the strange attractor
with its domain of attraction, our study lays the groundwork for the development of
more advanced design principles for digitally controlled, one dimensional systems. An
important direction for future research is the extension of the one-dimensional results to
the higher dimensional digital control problems listed in the Introduction.
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